
Alpha Band Dysconnectivity Networks in Major
Depression during Resting State

Wenya Liu?,†, Xiulin Wang?,‡, Fengyu Cong?,†, Timo Hämäläinen†
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Abstract—Major depression disorder (MDD) is associated with
abnormal variability of functional connectivity during resting
state. Impaired modulations of resting alpha oscillations have
been demonstrated to be an important biomarker of MDD. In
this study, we investigated the alpha-band dynamic functional
networks in MDD using resting state electroencephalography.
To explore the dysconnectivity networks at the group level, we
assume that the MDD group and the healthy group share some
common temporal networks but also retain individual temporal
networks. Considering the multiway structure of the data, we
applied a coupled tensor decomposition model on two adjacency
tensors with the dimension of time × connectivity × subject.
The double-coupled constraints are imposed on temporal and
adjacency modes. We summarized two alpha-band dysconnectiv-
ity networks by clustering the individual networks characterized
with MDD.

Index Terms—major depression, oscillatory networks, coupled
tensor decomposition, dynamic connectivity

I. INTRODUCTION

Major depression disorder (MDD) is one of the most
common psychiatric disorders which impairs the affective
and cognitive functions of patients [1], [2]. Many researches
have demonstrated that MDD is associated with large-scale
dysconnectivity of functional networks during resting state,
like the default mode network (DMN) [3], [4]. The process that
functional networks coalesce and dissolve overtime to support
continuous cognitive tasks is termed as dynamic functional
connectivity (dFC). Recently, researches have reported that
MDD shows increased and decreased dFC of specific networks
and cross-talk networks. [5]–[7]. Oscillations can regulate
changes of functional networks [8], [9]. Impaired coordination
of networks with resting alpha oscillations is notable in
psychiatric disorders, like MDD [9]–[11]. In this study, we
investigated the alpha band dFC in MDD using resting state
electroencephalography (EEG).

In the analysis of temporal dynamics of functional con-
nectivity for two groups with multiple subjects, the data is
naturally characterized with a multidimensional structure. In
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addition, under the same condition, the MDD group and
the healthy group share coupling information but also retain
individual features for group differences [12], [13]. Matrix
decomposition methods, like principal component analysis
(PCA) and independent component analysis (ICA), are widely
used in dFC analysis to obtain the connectivity components
and the corresponding temporal profile [14]–[16]. However,
matrix decomposition methods will impose uncorrelated or
independent constraints and ignore the hidden interactions
across different modes of multiway data. Recently, tensor
decomposition methods have been applied in dFC analysis,
and the applications are based on the assumption of spatial
consistency, which means that the functional networks are
consistent among subjects or groups [17], [18]. In this study,
we introduced the coupled Canonical Polyadic decomposition
(coupled CPD) model, which is a very flexible model to add
desired constraints. This model can reveal the interactions
between different modes and realize simultaneous extraction
of common features shared among two groups and individual
features specified in MDD [13], [19]. To the best of our
knowledge, this is the first attempt to apply the coupled CPD
model and investigate the dysconnectivity networks in MDD
or other psychiatric disorders during resting state.

In our study, we proposed a low-rank double-coupled
nonnegative Canonical Polyadic decomposition (DC-NCPD)
model based on coupled CPD to explore the temporal dy-
namics of functional networks in MDD during resting state.
Firstly, we extracted alpha oscillations and applied phase lag
index (PLI) to construct functional connectivity networks with
a sliding window technique. Then, we constructed two third-
order tensors with the dimension of time × connectivity ×
subject for the MDD group and the healthy group. We applied
the low-rank DC-NCPD model, and imposed the nonnega-
tive constraint on each mode and the coupled constraint on
temporal and adjacency modes. Finally, we clustered two
dysconnectivity networks from individual features in MDD.

In this paper, scalars, vectors, matrices and tensors are
denoted by lowercase, boldface lowercase, boldface uppercase
and boldface script letters, respectively, e.g., x, x, X , X .
Indices range from 1 to their capital version, e.g., i = 1, · · · , I .



II. METHODS

A. Data Description and Preprocessing

We used the Multi-modal Open Dataset for Mental-disorder
Analysis (MODMA dataset) which was an open access dataset
[20]. Twenty-four MDD subjects and twenty-nine healthy
control (HC) subjects were recruited in the experiment. Five
minutes eye-closed resting state EEG signals were recorded
by a 128-channel HydroCel Geodesic Sensor Net (Electrical
Geodesics Inc., Oregon Eugene, USA) with the sampling
frequency of 250 Hz. We preprocessed the data with EEGLAB
toolbox [21]. The data were filtered to alpha band (8-13 Hz)
with a FIR band-pass filter and re-referenced with average
reference. Eye movement artifacts were removed by ICA, bad
channels were interpolated by spherical interpolations, and bad
time points were removed continuously. After preprocessing,
the three minutes EEG data with twenty-two MDD subjects
and twenty-four HC subjects were remained for further anal-
ysis.

B. Dynamic functional connectivity

The EEG data were segmented into T = 178 windows by a
sliding window with the window length of 3 s and the overlap
of 2 s. Then, to reduce the influence of source leakage, PLI was
applied to calaulate the functional connectivity [22]. Within
each time window and each subject, the PLI value of channel
i and channel j can be computed as:

PLIi,j = |< sign(ϕi − ϕj >| , (1)

where ϕi and ϕj mean the instantaneous phases calculated by
Hilbert transform of channel i and channel j.

Then, we can construct two adjacency tensors with the di-
mension of time × connectivity × subject, XHC ∈ RT×N×SHC

(178 × 8128 × 24) for the HC group and XMDD ∈
RT×N×SMDD (178 × 8128 × 22) for the MDD group, where
N = 128 × (128 − 1)/2 represents the number of unique
connections. SHC = 24 and SMDD = 22 mean the number of
subjects in the HC group and the MDD group, respectively.

C. Coupled Canonical Polyadic Decomposition

1) Low-rank double-coupled nonnegative Canonical
Polyadic decomposition: For two third-order tensors
XHC ∈ RT×N×SHC and XMDD ∈ RT×N×SMDD , we impose
coupled constraints on temporal and adjacency modes. The
DC-NCPD model can be represented by minimizing the
following objective function:

J (u(n)
r ,v(n)

r ) = ‖XHC −
RHC∑
r=1

u(1)
r ◦ u(2)

r ◦ u(3)
r ‖2F
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r=1

v(1)
r ◦ v(2)
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r ‖2F

(2)

s.t.u(1)
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r (r ≤ Lt), u
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r (r ≤ Lc).

where RHC and RMDD are the ranks of XHC and XMDD, and ◦
denotes the vector outer product. u(n)

r and v
(n)
r denote the rth

component of factor matrices U (n) and V (n), n = 1, 2, 3, in
the modes of time, connectivity and subject for two groups. ‖·
‖F denotes the Frobenius norm. Lt and Lc denote the number
of components coupled in temporal and adjacency modes, and
Lt,c ≤ min(RHC, RMDD).

In this study, the fast hierarchical alternative least squares
(FHALS) algorithm is applied to optimize the DC-NCPD
problem in (2) [13], [23]. To reduce the computational com-
plexity, the low-rank approximation by the alternative least
squares (ALS) algorithm is introduced before FHALS opti-
mization. We suppose that the rank-R̃HC approximation of
XHC and the rank-R̃MDD approximation of XMDD obtained
by unconstrained ALS are expressed as JŨ (1), Ũ (2), Ũ (3)K
(R̃HC ≤ RHC) and JṼ (1), Ṽ (2), Ṽ (3)K (R̃MDD ≤ RMDD),
respectively. With the FHALS algorithm, the minimization
problem in (2) can be converted into max(RHC, RMDD) rank-1
subproblems, which can be solved sequentially and iteratively.
For the rth subproblem, the learning rules of u

(n)
r and v

(n)
r

can be formulated as:
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where Γ̃(n) = [ŨTU ]~−n , Γ(n) =
[
UTU

]~−n , Λ̃(n) =

[Ṽ TV ]~−n , and Λ(n) =
[
V TV

]~−n . ~ denote the
Hadamard (element-wise) product.

Specially, if r ≤ Lt, u
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Ũ (1)Γ̃(1)
r −U (1)Γ(1)
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A simple “half-rectifying” nonlinear projection is applied
to obtain the nonnegative components. The max(RHC, RMDD)

subproblems of u(n)
r and v

(n)
r are optimized alternatively one

after another until convergence. The FHALS-based DC-NCPD
algorithm is summarized in Algorithm 1.

2) Selection of components: In the algorithm described
above, six parameters should be selected, including the number
of extracted components for ALS low-rank approximation R̃HC
and R̃MDD, the number of totally extracted components RHC

and RMDD, and the number of coupled components Lt and
Lc. In this study, we set R̃HC = RHC and R̃MDD = RMDD,
which are selected by performing PCA on the matricization
data unfolded along the third mode for each tensor and keeping
the number of components with 90% explained variance. For
the selection of the coupled components number Lt and Lc, we



Algorithm 1: DC-NCPD-FHALS algorithm

Input: XHC, XMDD, Lt, Lc, RHC, RMDD, R̃HC, R̃MDD
1 Initialization: U (n), V (n), n = 1, 2, 3

2 Calculate Ũ (n), Ṽ (n), n = 1, 2, 3 via unconstrained
ALS

3 while unconvergence do
4 for n = 1, 2, 3 do
5 for r = 1, 2, · · ·max(RHC, RMDD) do
6 Update u

(n)
r , u(n)

r via (3), (4), (5) and (6)
7 end
8 end
9 end

Output: U (n), V (n), n = 1, 2, 3

performed the third-order CP tensor decomposition based on
the FHALS algorithm on two tensors separately, and calculated
the correlation maps of extracted components between two
tensors in temporal and adjacency modes, respectively. The
number of highly correlated (coupled) components is selected
according to the correlation maps.

Fig. 1: The correlation maps of temporal components and
adjacency components between the MDD group and the HC
group.

III. RESULTS

After PCA analysis, we set RHC = 18 and RMDD = 17.
According to the correlation maps of temporal components
and adjacency components in Fig. 1, we set Lt = 3 as the
number of coupled components in the temporal mode and
Lc = 9 as the number of coupled components in the adjacency
mode. We applied the low-rank DC-NCPD-FHALS algorithm
30 times, and used k-means clustering to analyze the individual
networks in MDD from the 30-time runs. We summarized
two alpha-band dysconnectivity networks, as shown in Fig. 2.
Fig. 2(I) showed a fronto-parietal network which was related
to attention and emotion regulation, and Fig. 2(II) showed a
frontal-occipital dysconnectivity network which also has been
demonstrated to be associate with attention.

IV. DISCUSSION AND CONCLUSION

In this study, we proposed a coupled CPD model for dFC
analysis in MDD using resting EEG. We investigated the
alpha-band dysconnectivity networks in MDD during resting
state. For the time-varying functional connectivity calculated
by the PLI method, we constructed two third-order tensors
with the dimension of time × connectivity × subject. Under
the assumption that common temporal functional networks
were shared between the MDD group and the HC group,
and individual temporal functional networks were also retained
in each group, we formulated a double-coupled CPD model
which was realized by the proposed low-rank DC-NCPD-
FHALS algorithm. From the specific features of MDD, we
summarized two overactive dysconnectivity networks in the
alpha band.

We identified a fronto-parietal network, as shown in Fig.
2(I). The dysconnectivity of the fronto-parietal network has
been reported in many psychiatric disorders with the im-
pairment in cognitive control. The fronto-parietal network is
associated with the top-down modulation of attention and
emotion [4], [24], [25]. Many previous researches reported
the overactive fronto-parietal network in MDD, which could
well support our findings. Fig. 2(II) showed a frontal-occipital
network which was overactive in MDD. The fronto-occipital
pathways played an important role in human attention [26].
With hierarchical brain architectures, long-distance connec-
tions can mediate global integration for higher cognition [2],
[27]. The dysconnectivity of the frontal-occipital network in
MDD might represent the deficit in global integration for
attention regulation.

The proposed model in our study fully considered the
multiway structure of the temporal networks from different
subjects and groups, common temporal networks between two
groups, and individual temporal networks specified in each
group. This framework was based on the group-level analysis.
Therefore, the extracted temporal networks remained the same
between all the subjects within each group. Subject differences
were decomposed in residuals which were not concerned in
our study.

This study applied a novel coupled CPD model for dFC
analysis in MDD during resting state. The results were
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Fig. 2: The two clusters of dysconnectivity networks in MDD.

well demonstrated by previous findings, and might provide
promising biomarkers in the pathoconnectomics of MDD.
The proposed model can also be applied to other psychiatric
disorders and different cognitive conditions.
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