®

Check for
updates

Identifying Task-Based Dynamic
Functional Connectivity Using Tensor
Decomposition

Wenya Liu'2, Xiulin Wang!2, Tapani Ristaniemi?, and Fengyu Cong!»23:4(=)
! School of Biomedical Engineering, Faculty of Electronic Information and Electrical
Engineering, Dalian University of Technology, 116024 Dalian, China
wenyaliu0912@foxmail.com, xiulin.wang@foxmail.com, cong@dlut.edu.cn
2 Faculty of Information Technology, University of Jyviskyli, Jyviskyld, Finland
tapani.e.ristaniemi@jyu.fi
3 School of Artificial Intelligence, Faculty of Electronic Information and Electrical
Engineering, Dalian University of Technology, 116024 Dalian, China
4 Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian
University of Technology, 116024, Liaoning, Dalian, China

Abstract. Functional connectivity (FC) patterns in human brain are
dynamic in a task-specific condition, and identifying the dynamic changes
is important to reveal the information processing processes and network
reconfiguration in cognitive tasks. In this study, we proposed a com-
prehensive framework based on high-order singular value decomposition
(HOSVD) to detect the stable change points of FC using electroen-
cephalogram (EEG). First, phase lag index (PLI) method was applied to
calculate FC for each time point, constructing a 3-way tensor, i.e., con-
nectivity X connectivity x time. Then a stepwise HOSVD (SHOSVD)
algorithm was proposed to detect the change points of FC, and the stabil-
ity of change points were analyzed considering the different dissimilarity
between different FC patterns. The transmission of seven FC patterns
were identified in a task condition. We applied our methods to EEG
data, and the results verified by prior knowledge demonstrated that our
proposed algorithm can reliably capture the dynamic changes of FC.

Keywords: Dynamic functional connectivity - HOSVD - EEG -
Tensor decomposition

1 Introduction

Brain functional connectivity (FC) is essentially dynamic for different cognitive
demands even in a task-specific condition, and identifying the changes of FC
can help to understand the reconfiguration of brain network topology along
cognitive tasks [3,6,11]. Electroencephalogram (EEG) can record the electrical
brain activity in a millisecond timescale with low cost, and this temporal richness
shines new light to the dynamic FC analysis in a specific cognitive task which
presents short and repeated stimuli, like stimuli used in event-related potential
(ERP) study. It is important to find the task-locked dynamic brain networks to
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explore the precise brain topology changes in information processing. For ERP
study, traditional methods calculate static FC for the whole trial which can
not accurately capture the real reconfiguration of brain networks regarding the
stimuli. Based on the fact that moment-to-moment fluctuations in FC are more
stable during task than rest [6], pinpointing the time intervals during which the
FC is considered stationary is in line with reality under task-specific condition.

Existing methods for dynamic FC are mainly based on sliding window, which
segment the whole time series into a number of overlapping time windows, then
community detection, clustering and graph theory-based methods are applied
to evaluate the FC evolutions across time windows [1,2,5,15]. But this kind of
methods are sensitive to the choice of window length, overlapping and window
shape [9]. Another category of commonly used methods are based on matrix
factorization, like temporal principal component analysis (PCA) and temporal
independent component analysis (ICA) [10,13], which decompose the data (time
X connectivity) into connectivity components and the corresponding temporal
profile. However, the uncorrelated or independent constraint imposed to connec-
tivity components is not practical into use.

Recently, tensor decomposition methods are applied to dynamic FC analysis
[11,12] for change point detection, which can take the multiway arrangement of
connectivity along time, frequency and subject dimensions into consideration.
Inspired by their works, which used high-order singular value decomposition
(HOSVD) for the analysis of dynamic FC, in this study, we constructed a 3-way
tensor formed by connectivity matrix along time (connectivity X connectivity x
time), and proposed a comprehensive framework to detect the change points of
brain networks in an ERP dataset. Our work is different from the previous stud-
ies in [11,12] with some new highlights. First, we proposed a stepwise HOSVD
(SHOSVD) method to detect the dynamic changes sequentially and avoid spu-
rious FC changes caused by outliers. Second, we combined the results from a
range of parameters to obtain multiple sets of stable change points, allowing
different dissimilarity between different pairs of FC patterns, so the results are
not sensitive to the predefined threshold of FC dissimilarity measurement. Our
proposed algorithm can efficiently track the dynamic changes of brain networks
during task condition, and its feasibility is demonstrated by an ERP study.

2 Materials and Methods

2.1 Data Description

Our proposed framework was applied to EEG data which have been published in
[7,16]. In this experiment, nineteen participants were informed to play a three-
agent (“Self” | another participant called “Other”, and a computer called “Com-
puter”) gambling game, and two golden eggs were presented to choose by each
agent. After the choice of a golden egg, a cue stimuli was presented which indi-
cated whether the participants will be informed about the outcomes such that
curiosity will be satisfied (CWS) or curiosity will not be satisfied (CWN), then
the feedback of monetary gain or loss was given.
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The data were collected at 64 scalp sites using the electrodes mounted
in an elastic cap (Brain Product, Munich, Germany), and preprocessed using
EEGLAB [4]. One participant was removed due to bad data quality, and data
were down-sampled to 500 Hz and band-pass filtered to 1-40 Hz. Eye movements
were rejected by ICA, and the cue-locked data were extracted from —200 ms to
1000 ms. Then any segment whose max amplitude exceeds 100 0V was removed.

According to the results of previous paper [16], we only analyzed the data of
cue onset in Self and CWS condition, and 58 scalp channels were used in this
study.

2.2 Phase Synchronization

The communication of brain regions or neural populations depends on phase
interactions for electrophysiological neuroimaging techniques, like EEG [17].
Considering the volume conduction effect to sensor space connectivity, we calcu-
lated the pairwise synchronization using PLI which can avoid volume conduction
effect by discarding zero-lag interactions [14].

For signal z(t), t = 1,2,---,T, its analytical signal z(t) can be constructed
by Hilbert transform,

= z(r)

z(t) = x(t) +i2(t) = %PV/ ﬁdﬂ (1)

where Z(t) is the imaginary part and PV refers to the Cauchy principal value.

Then the instantaneous phase ¢(t) can be computed as follows:
I(t)

t) = tan—=. 2

o(t) = arc Cm:c(t) (2)

For an ERP dataset containing C' channels, S subjects and N trials, the

phase synchronization between channel ¢ and channel j at time ¢ for subject s

can be computed by PLI:

s 1
PLI(i,j)(t) = N ) (3)

N

> sign(A¢fy )
n=1

where A@fi,j,n) = cpsl.vn) - gofj,n is the phase difference between channel i and
channel j at time ¢ fﬂor subject s. It should be noted that any 0 or +x value of
Aap‘(gi’j’n) is discarded here which is considered to be caused by volume conduc-
tion.

In our study, the PLI value is calculated by averaging across trials and sub-
jects, because that phase synchrony can only be detected in a statistical sense.
We also assume that the phases at time ¢ are the same for all subjects due to
the stimulus-locked EEG. Then we can get the time-varying adjacency matrix
at time point ¢:

S
1 S
A (t) = S > PLI; (1), (4)
s=1
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where A(t) € RE*¢, and a nonnegative FC tensor of connectivity x connectivity
X time can be constructed as A € REXCXT,

2.3 Stepwise High-Order Singular Value Decomposition

HOSVD is a tensor generalization of singular value decomposition (SVD) with
orthogonal factors in each mode. Each factor matrix is computed by the left sin-
gular vectors of SVD performed on the unfolded tensor along the corresponding
mode, such as the factor in mode 3:

A3 = Ui DVT, (5)

where Az € RT*CC is mode 3 matricization of tensor A, D € RT*CC is the
diagonal matrix, and V' € RE“*CC is the right singular vectors. The FC tensor
A € REXEXT i fylly decomposed using HOSVD:

A = g X1 Uconn X2 Uconn X3 Utimev (6)

where G € REXCXT g the core tensor, Ugpn, € REXC and Uyime € RT*T are
the factor matrices in connectivity space and time space, respectively. Note that
the factor matrices in mode 1 and mode 2 are the same because of the symmetry
of connectivity matrix A(t), and the core tensor G represents the interactions
between 3 modes.

Let A"™¢ denote the multiplication of tensor A € RE*C*T with the factor
matrix Upime € RT*T in mode 3, so we can get:

Alme — Axs UL (7)

Then we can get the first frontal slice:

Atzme _ Z utzme b (8)

where u“me denotes the tth element in the first column of factor matrix Ugime,
and A.,.,t means the tth frontal slice of the original tensor A. Because factor
matrix Uyjme is the left singular vectors of SVD performed on nonnegative matrix
A(3), so elements of the first column u“me are all positive or all negative, i.e., they
have the same sign. So we can regard the first frontal slice A“"“a as the weighted
sum of connectivity across time, and this is also called the summarization of
the stationary connectivity in a time interval [12]. On the other hand, A/}
captures most of the energy of time-varying connectivity patterns across the
stationary time interval, due to that the corresponding singular value of u“me
is the largest one. Considering the superiority described above, we proposed
a SHOSVD algorithm for dynamic FC change points detection, as illustrated
below.
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Fig. 1. The times of each time point detected as change point. 82 time points are
detected as change points in 51 runs of SHOSVD.

Summary of the proposed SHOSVD algorithm:

Step 1: Set ¢ = 3, and perform full HOSVD on the tensor A € RE*Cxt
constructed by the first ¢ frontal slices of original FC tensor .A.

Step 2: Compute the absolute value of the first frontal slice A“”}e (t), and
normalize it to [0 1].

Step 3: Normalize the consequent three original FC matrices A. . 41,
A. .10 and A. .43 to [0 1], respectively.

Step 4: Compute Euclidean distance pi, po and ps between At”’}e(t) and
A .11, A 40 and A. . 13, Tespectively.

Step 5: Compare p1, po and p3 with the predefined threshold .

Step 6: If p1 > A & p2 > A & p3 > A, save t as the change point for the
sub-segment, remove A € REXC*t from original FC tensor A, and go back to
step 1. Else, set t =t + 1, and go back to step 1.

The detection will be terminated until all the time points are included to a
stationary interval. Here we give some statements about the proposed SHOSVD
algorithm. In step 1, we start the algorithm with ¢ = 3 for the conduction of
HOSVD, because we assume that the first three time points are in the same sta-
tionary segment. In step 2, the first frontal slice A“”}e (t) should be all negative or
all positive due to the uncertain sign of u:tflme, so here we take its absolute value
for the following analysis. In step 2 and step 3, the normalization is necessary
to constraint the matrices to the same scale, because we focus on the similarity

between connectivity patterns which should not be affected by their amplitude
r=roek
all the elements are constrained to [0 1], which is the classical range of a FC
matrix. In step 4, the Euclidean distance is computed by the Lo norm of the dif-
ference between two matrices. In step 6, we test the distances for the consequent
three time points to avoid spurious changes by outliers. In step 5, the predefined
threshold A is the only parameter to be determined in SHOSVD method, and

its selection will be discussed in the next section.

scales. For a matrix X, the normalization is realized by Z;; = SO
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Fig. 2. The stable change points of dynamic functional connectivity. The red line rep-
resents the grand averaged data across trials and subjects of FCz channel. The blue
dotted lines mean the change points located at —160 ms, —64 ms, 102 ms, 164 ms, 414
ms, and 562 ms. (Color figure online)

2.4 The Stability of Change Points

Considering the fact that the dissimilarity of various pairs of FC patterns may
be different. For example, the distance p;2 between connectivity patterns 1 and
2 is undoubtedly different from the distance ps3 between connectivity patterns 2
and 3, because different connectivity patterns may share the same connections,
like visual network and frontal-visual network, or share none connections, like
visual network and frontal network. So we can not set a common threshold for
the change point evaluation. Here we set a range of threshold [A; As] which
would be determined with experience by testing the performance of SHOSVD
on the data, and perform SHOSVD for each threshold A in the predefined range.
After obtaining the multiple sets of change points, we take the most frequently
appeared points as the final stable change points, which are considered to char-
acterize the time-varying FC changes. Therefore, the results are not sensitive to
the choice of threshold.

3 Results

3.1 Change Points Detection

First, PLI method was performed on the preprocessed data at each time point,
constructing a 3-way FC tensor with dimensions of 58 x 58 x 600. Then
SHOSVD was applied for change points detection. Dissimilarity thresholds were
selected between the range with a step of 0.1, so 51 sets of change points were
obtained in this study. All the change points detected for the 51 runs of SHOSVD
were shown in Fig. 1. Finally, we kept 10% of the most frequently appeared time
points as the final stable change points which can characterize the dynamic FC
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Fig. 3. The brain network summarization of stationary time interval (164-414) ms.

variety, as shown in Fig. 2. From the red line of Fig. 2, we can see that the cue
stimuli induced a feedback-related negativity (FRN)-like component followed by
a P300 component. Refer to [16] for a detailed explanation. According to Egs. (6
8), we summarize the FC in time interval (164-414) ms. Figure3 and Fig.4
depicted the brain network and connectivity matrix of stationary time interval
(164-414) ms which contained both FRN-like component and P300 component,
respectively. We obtained a central-posterior network which was consistent with
the previous findings [16].

3.2 Discussion

Previous studies have reported that curiosity is a type of reward anticipation
which can induce a FRN-like component, and a following P300 component which
is associated with context updating and behavioral adjustments [8,16,18]. In our
results, we incorporated both FRN-like and P300 components into the same sta-
ble time interval (164-414) ms, and summarized a central-posterior functional
connectivity. In the previous results, a central-posterior delta power was elicited
by the cue stimuli within 200-350 ms, and the brain activation results were con-
sistent with our findings [16]. From our results, we conclude that the curiosity
satisfaction and behavioral adjustment may share the same brain topology con-
figuration. However, this interpretation needs further verification which should
take the FC variety across frequency domain into consideration. What’s more,
other stable time intervals also need to be deeply analyzed, which is our future
extended work based on this study. The number of change points should be
verified by prior knowledge which is important to the explanation of the results.
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Fig. 4. The connectivity matrix summarization of stationary time interval (164—
414) ms.

4 Conclusion

In this study, we proposed a comprehensive framework for the analysis of task-
based dynamic FC. Tensor decomposition technique is applied considering the
multiway arrangement of connectivity matrices across time, so both structure
properties of FC and its variety information along time are considered for the
change points detection. As we all know, it is hard and important to exactly
lock the brain response to external stimuli and characterize the changes of brain
states in a specific cognitive task. Our change points detection framework can
efficiently separate different brain topology configurations in a task condition.
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