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Abstract—Constrained joint analysis of data from multiple

sources has received widespread attention for that it allows

us to explore potential connections and extract meaningful

hidden components. In this paper, we formulate a flexible joint

source separation model termed as group nonnegative matrix

factorization with sparse regularization (GNMF-SR), which aims

to jointly analyze the partially coupled multi-set data. In the

GNMF-SR model, common and individual patterns of particular

underlying factors can be extracted simultaneously with imposing

nonnegative constraint and sparse penalty. Alternating optimiza-

tion and alternating direction method of multipliers (ADMM) are

combined to solve the GNMF-SR model. Using the experiment

of simulated fMRI-like data, we demonstrate the ADMM-based

GNMF-SR algorithm can achieve the better performance.

Index Terms—Alternating direction method of multipliers,

coupled, group nonnegative matrix factorization, joint analysis,

sparse representation

I. INTRODUCTION

Nonnegative matrix factorization (NMF), providing a part-
based representation of nonnegative data, has been widely
applied in blind source separation (BSS) problems includ-
ing signal processing and machine learning [1]–[4]. With
increasing availability of sensor technologies, we are now
facing a mass of data from multiple sources that need to
be jointly separated [5]–[8], such as multi-subject/multi-modal
biomedical data [6]–[8]. Although many studies have shown
that conventional NMF methods are effective in a large number
of single dataset applications, their inefficiency to jointly
analyze multiple datasets has limited their broader usage [7].
In order to fill the gap between NMF and group analysis
of multiple datasets, group nonnegative matrix factorization
(GNMF) was proposed as an update to the standard NMF in
multi-set problems [9], [10]. In the group model, coupling
information across datasets can be fully exploited, making
it possible to achieve higher performance than BSS-based
algorithms originally designed for single dataset [5], [7], [9].
Moreover, it is easy to extract the underlying patterns that are
common among datasets, as well as individual patterns that
exhibit internal variability [8], [9]. Group analysis of multiple
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datasets can also automatically maintain the alignment of
coupled patterns among datasets, while BSS-based algorithms
need to adopt some post-aligned strategies such as correlation
analysis [5], [9].

Sparse representation aims to encode the data using fewer
‘active’ components for better interpretation of the encoding
[11], [12]. Even though NMF-based algorithms can natu-
rally produce a sparse representation of data, the sparseness
of extracted factors is not enough and uncontrollable [11].
Therefore, additional sparse regularization has been widely
applied to NMF to promote sparse representation and alleviate
factorization non-uniqueness [13]. Inspired by GNMF and
sparse NMF, we formulate a flexible group nonnegative matrix
factorization with sparse regularization (GNMF-SR) model by
imposing an efficient and commonly used regularizer l1-norm
for constrained joint analysis of partially coupled datasets.
Obviously, the GNMF works such as [9], [10] did not take the
sparse characteristic of latent variables into consideration, and
the sparse NMF works in [11]–[13] cannot utilize the coupled
information across the datasets. In recent years, the alternating
direction method of multipliers (ADMM) has become an
effective and popular tool for constrained NMF problems [14]–
[17], and in this study we employ ADMM method to optimize
the GNMF-SR model. The convergence issue of NMF-based
or nonconvex optimization problems about ADMM has been
widely discussed in [15]–[19], which will not be discussed in
this study. For more details of ADMM method, please refer
to the comprehensive review in [17].

The rest of this paper is organized as follows. Section 2
introduces multi-set data model, GNMF model, GNMF-SR
model, ADMM method and model optimization via ADMM
method. In section 3, simulation experiment on synthetic
fMRI-like data is conducted. The last section concludes this
paper.

Notations: Scalars, vectors and matrices are respectively
denoted by lowercase, boldface lowercase and boldface
uppercase, e.g. x, x and X . R+ denotes the nonnegative
real number. Operators (·)T , k·k1 and k·kF denote transpose,
l1-norm and Frobenius norm, respectively. hA,Bi denotes the
inner product of matrices A and B. hA,Bi :=

P
i,j aijbij

can be substituted by tr(ABT ) for A and B with the same
size I ⇥ J .
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II. METHODS

In this section, we first introduce the multi-set data model,
then we present the GNMF and GNMF-SR models, and last
give the ADMM method and the optimization solution of
GNMF-SR model.

A. Multi-set data model

Given a set of nonnegative matrices X(s) 2 RI(s)⇥J(s)

+ ,
s = 1, 2, · · · , S, the multi-set data model assumes that each
data X(s) can be expressed by:

X(s) ⇡ A(s)B(s) = [A(s)
C A(s)

I ]B(s), (1)

where A(s) 2 RI(s)⇥R(s)

+ and B(s) 2 RR(s)⇥J(s)

+ represent
the latent variable and corresponding coefficient matrix re-
spectively. Generally, R(s) < min(I(s), J (s)) is assumed for
providing a low-rank representation of X(s). Considering that
the data are collected under the same condition, it can be
reasonably expected that there will be some identical or highly
correlated hidden information between the data. Therefore,
in multi-set data model, we assume that each factor matrix
A(s) = [A(s)

C A(s)
I ] includes two patterns: A(s)

C 2 RI(s)⇥L
+ ,

0  L  R(s), a common matrix shared by all S matrices as
A(1)

C = · · ·A(S)
C = AC , and A(s)

I 2 RI(s)⇥(R(s)�L)
+ , which

corresponds to the individual characteristic in each dataset.

B. Group nonnegative matrix factorization

Considering the coupling structure among latent variables
A(s) in multi-set data model, we need to analyze S sets of
X(s) simultaneously, which is different from the conventional
NMF problem. Using the Euclidean divergence minimization,
the GNMF of X(s), s = 1, 2, · · · , S, can be achieved by
solving the following optimization:

minimize
A(s),B(s)

1

2

SX

s=1

���X(s)�A(s)B(s)
���
2

F
(2)

subject to A(s) � 0,B(s) � 0.

In many applications, only the underlying patterns in the
variable dimension need to be sparse [20]. Combing coupling
constraint and sparse penalty on the factor matrix A(s), we
formulate a flexible group nonnegative matrix factorization
with sparse regulation (GNMF-SR) model as follows:

minimize
A(s),B(s)

1

2

SX

s=1

���X(s)�A(s)B(s)
���
2

F
+

SX

s=1

�(s)
R(s)X

r=1

���a(s)
r

���
1

(3)
subject to A(s) � 0,B(s) � 0,A(1)

C = · · ·A(S)
C = AC ,

where a(s)
r corresponds to the rth column of A(s) . The

penalty term
PR(s)

r=1

���a(s)
r

���
1

is to impose the sparsity on

factor matrix A(s), and it can be reformed as
⌦
E,A(s)

↵
, in

which E 2 RI(s)⇥J(s)

+ is a matrix whose entries are all ones.
�(s) � 0 is a predefined penalty parameter. For simplicity,
we set �(1) = �(2) = · · ·�(S). Later we will give a detailed

explanation of how to solve GNMF-SR model using ADMM
algorithm.

C. Alternating direction method of multipliers

According to [17], ADMM algorithm considers the follow-
ing problem:

minimize
x,z

f(x) + g(z) (4)

subject to Ax+Bz = c.

Using the scaled from, it can be updated iteratively using the
following steps:
8
>><

>>:

x := argmin
x

⇣
f(x) + (⇢/2) kAx+Bz � c+ uk22

⌘
,

z := argmin
z

⇣
g(z) + (⇢/2) kAx+Bz � c+ uk22

⌘
,

u := u+ (Ax+Bz � c) ,
(5)

where u denote the scaled dual variable and ⇢ > 0 denotes
the preselected augmented Lagrangian parameter.

D. GNMF-SR optimization using ADMM

To solve the nonconvex optimization problem, ADMM
algorithm splits it into smaller pieces so that it can be
easily handled one-to-one [17]. Moreover, the problem (3)
can be first converted to two sub-problems: A(s) and B(s)

via alternating optimization strategy, and then one of sub-
problems can be solved using ADMM algorithm effectively
if the other is fixed [16]. Combining alternating optimization
and ADMM strategies [14]–[17], [21], we introduce two
auxiliary variables Ã(s) and B̃(s), and consider the following
minimization reformation of (3) as:

1

2

SX

s=1

���X(s)�A(s)B(s)
���
2

F
+

SX

s=1

�(s)
R(s)X

r=1

���ã(s)
r

���
1

(6)

subject to A(s) = Ã(s),B(s) = B̃(s), Ã(s) � 0, B̃(s) � 0.

Corresponding to A(s), the auxiliary variable Ã(s) still con-
sists of two parts: Ã(s)

C and Ã(s)
I , and Ã(1)

C = · · · Ã(S)
C = ÃC .

The augmented Lagrangian function for the above problem (6)
is given by:

L(A(s),B(s), Ã(s), B̃(s),⇤(s),�(s))

=
1

2

SX

s=1

���X(s)�A(s)B(s)
���
2

F
+

SX

s=1

�(s)
R(s)X

r=1

���ã(s)
r

���
1

+
SX

s=1

⇢(s)

2

���A(s)�Ã(s) +⇤(s)
���
2

F

+
SX

s=1

µ(s)

2

���B(s)�B̃(s) + �(s)
���
2

F
,

(7)

where ⇤(s) 2 RI(s)⇥R(s)

+ and �(s) 2 RR(s)⇥J(s)

+ are termed
as dual variables. ⇢(s) and µ(s) are the penalty parameters
predefined by the user, and here we set ⇢(s) =

��B(s)
��2
F
/R(s)

and µ(s) =
��A(s)

��2
F
/R(s) as suggested in [16].
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8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

AC =


SP

s=1
X(s)

�
B(s)

C

�T �
SP

s=1
A(s)

I B(s)
I

�
B(s)

C

�T �
SP

s=1
⇢(s)⇤(s)

C +
SP

s=1
⇢(s)Ã(s)

C

�
SP

s=1
B(s)

C

�
B(s)

C

�T
+

SP
s=1

⇢(s)I

��1

A(s)
I =


X(s)

�
B(s)

I

�T �A(s)
C B(s)

C

�
B(s)

I

�T �⇢(s)⇤(s)
I +⇢(s)Ã(s)

I

�
B(s)

I

�
B(s)

I

�T
+⇢(s)I

��1

B(s) =

�
X(s)

�T
A(s) � µs�(s) + µ(s)B̃(s)

��
A(s)

�T
A(s) + µ(s)I

��1

ÃC =


AC +

PS
s=1 ⇢(s)⇤(s)

CPS
s=1 ⇢(s) �

PS
s=1 �(s)ECPS

s=1 ⇢(s)

�

+

, Ã(s)
I =


A(s)

I +⇤(s)
I � �(s)EI

⇢(s)

�

+

B̃(s) =
h
B(s) + �(s)

i

+
, ⇤(s) = ⇤(s) +A(s) � Ã(s), �(s) = �(s) +B(s) � B̃(s)

(8)

For the solutions of
�
A(s), Ã(s),⇤(s)

 
,
�
B(s), B̃(s),�(s)

 

in (7), we can calculate them successively via minimizing L
with respect to one of them while fixing the others. Note
that the primal variable A(s) and auxiliary variable Ã(s)

both include the common and individual patterns, we need
to calculate these two patterns separately. Furthermore, since
the common pattern AC (or ÃC) is shared by A(s) (or Ã(s)),
s = 1, 2, · · · , S, we need to combine the information from
all matrices from 1 to S to calculate their solutions. Different
from the common pattern, the individual pattern A(s)

I or Ã(s)
I

just needs to be calculated separately by the corresponding
sth set data. Moreover, we also divide B(s) into two parts
B(s)

C 2 RL⇥J(s)

+ and B(s)
I 2 R(R(s)�L)⇥J(s)

+ row-wisely. The
specific solutions of primal, auxiliary and dual variables are
given in (8), in which EC 2 RI(l)⇥L

+ and EI 2 RI(l)⇥(R(l)�L)
+

are the matrices whose elements are all equal to one. We
summarize the GNMF-SR algorithm based on ADMM update
(termed as GNMF-SR-ADMM) in Algorithm 1.

Algorithm 1: GNMF-SR-ADMM algorithm

Input: X(s), L, and R(s), s = 1, · · · , S
1 Initialization:
2 A(s), B(s), Ã(s), B̃(s), ⇤(s), �(s), s = 1, · · · , S
3 for k = 1, · · · ,MAXk do

4 According to (8);
5 Update AC and ÃC ;
6 for s = 1, · · · , S do

7 Update A(s)
I , Ã(s)

I and ⇤(s);
8 Let A(s) = Ã(s);
9 Update B(s), B̃(s) and �(s);

10 Let B(s) = B̃(s);
11 end

12 if stopping criterion is satisfied then

13 return

14 end

15 end

Output: A(s), B(s), s = 1, 2, · · · , S

III. EXPERIMENT AND RESULTS

In this section, we provide an experiment of synthetic
nonnegative fMRI-like data to demonstrate the performance of
GNMF-SR-ADMM algorithm. Multiplicative update (MU, [1],
[9]), alternating proximal gradient (APG, [4], [22]), alternative
least squares (ALS, [3]) and fast hierarchical alternative least
squares (fHALS, [2]) are also extended to solve the GNMF-SR
model for comparison. In addition, by controlling the values of
� and L, three other models including NMF (� = 0, L = 0),
NMF-SR (L = 0) and GNMF (� = 0) are also considered in
this experiment.

All experiments are carried out with the following computer
configurations: CPU: Intel Core i5-7500 @ 3.40Hz 3.41Hz;
Memory: 16Gb; System:64-bit Windows 10; Matlab R2016b.
Initialization. For the initialization of factor matrices, we use
the uniformly distributed pseudorandom numbers generated by
Matlab function rand.
Termination criterion. We use the change of relative error
[22] (the threshold is set by 10�8), and fix the maximum
number of iterations to 1000.
Evaluation index. We adopt peak signal-to-noise ratio (PSNR,
[3]) and inter-symbol-interference (ISI, [23]) to evaluate the
accuracy of the estimated factor matrices. Meanwhile, we use
the values of objective function (Obj), relative error (RelErr)
and running time to assess the data fittings.
Data construction. We apply the GNMF-SR model to the
joint analysis of multi-subject nonnegative fMRI-like data,
which are constructed from the benchmark simulated complex
fMRI dataset1. The amplitude of spatial maps (SM) and
corresponding time courses (TC) are shown in Fig. 1(a) and
they are adopted to generate the nonnegative fMRI-like data
for 6 subjects according to the source index set {1,2,5,6,7},
{1,2,4}, {1,2,4,5}, {1,2,8}, {1,2,3,5} and {1,2,3,4} designed
in [23], and more information about data construction can be
found in [23]. The SM images of all subjects are shown in Fig.

1(b). Each row corresponds to one subject, and the first two
columns are shared by all the subjects, which are considered
as the common patterns and the remains are the individual
ones.

1http://mlsp.umbc.edu/simulated complex fmri data.html
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(a) Original SMs and TCs (b) Regroup SMs (c) NMF-ADMM, PSNR=45.52dB

(d) NMF-SR-ADMM, PSNR=61.55dB (e) GNMF-ADMM, PSNR=52.07dB (f) GNMF-SR-ADMM, PSNR=64.31dB

Fig. 1. (a) Amplitude images of 1-8 simulated fMRI-like spatial maps (1st and 3rd columns) and corresponding time courses (2nd and 4th columns). (b-f)
SM images of constructed data and that of estimated ones via NMF-ADMM (� = 0, L = 0), NMF-SR-ADMM (� = 3e � 4, L = 0), GNMF-ADMM
(� = 0, L = 2) and GNMF-SR-ADMM (� = 3e� 4, L = 2) under SNR=20dB.

We fix SNR=20dB, and select 25 values for � ranging from
0 to 5. With varying �s, the PSNR curves of SM estimates
averaged from 30 Monte Carlo runs in the GNMF-SR model
(L = 0 & L = 2) via MU, ALS, APG, fHALS and ADMM
algorithms are shown in Fig. 2. Note that when L = 0 and
� = 0, the GNMF-SR will degenerate into the NMF problem.
From Fig. 2, we can see that the PSNR values of all algorithms
will increase and reach the highest at some point when the
sparse penalty parameter � increases, except that MU-based
algorithms show the insensitivity to the settings of � between
0 and 5. The sparse penalty will have a negative effect on the
algorithm performance when � increases to a certain point.

30
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-Inf -13 -11 -9 -7 -5 -3 -1 1

P
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log(beta)

NMF-MU

GNMF-MU

NMF-ALS

GNMF-ALS

NMF-APG

GNMF-APG

NMF-fHALS

GNMF-fHALS

NMF-ADMM

GNMF-ADMM

...

Fig. 2. Mean PSNR of SM estimates for 6 subjects under NMF-SR (L = 0)
and GNMF-SR (L = 2) models with the �s of 25 values varying from 0 to
5, SNR=20dB.

We also present the specific values of PSNR, ISI, Obj,
RelErr and running time for each algorithm under � = 0
and a post-selected � (which corresponds to the best per-
formance) in Table I. The performance of the GNMF-based
methods is superior to that of NMF-based ones. With sparse
regularization, the performance of NMF-based and GNMF-
based methods can be both significantly improved. Interest-
ingly, sparse penalty yields better performance improvements
than group constraint for NMF-based methods. GNMF-SR-
ADMM algorithm achieves the best performance, followed by
GNMF-SR-APG, NMF-SR-ADMM and GNMF-SR-fHALS
algorithms. However, from Table I, we can see that ADMM-
based methods seem are time consuming and will be improved
in our future work.

Furthermore, the SM images estimated via NMF-ADMM,
NMF-SR-ADMM, GNMF-ADMM and GNMF-SR-ADMM at
� = 0, 3e � 4 and L = 0, 2 are shown in Fig.1(c-f).
It can be clearly seen that some of SM images obtained
by NMF-ADMM and GNMF-ADMM algorithms are blurred
with shadows or small outliers. By imposing adequate sparse
regularization, those blurs are basically eliminated in the re-
sults of NMF-SR-ADMM and GNMF-SR-ADMM algorithms.
Moreover, from Fig. 1(e-f), we can denote that two group
analysis methods including GNMF-ADMM and GNMF-SR-
ADMM can extract both the common and individual patterns
for all the datasets, and also successfully correct the disorder
scenario of common patterns in the results of two NMF-based
algorithms as shown in Fig. 1(c-d).
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TABLE I
PERFORMANCE COMPARISON ON FMRI LIKE DATA BASED ON

GNMF-SR MODEL (L = 0, 2, SNR=20DB)

Method � PSNR ISI Obj RelErr Time/s

L = 0

ALS 0 46.68 0.0545 0.0103 0.3332 3.6941
1e-3 58.70 0.0117 0.0103 0.3335 6.2381

MU 0 45.23 0.0741 0.0102 0.3312 5.3236
8e-2 48.02 0.0645 0.0102 0.3318 5.2624

APG 0 45.56 0.0859 0.0101 0.3303 6.8339
5e-4 58.61 0.0303 0.0105 0.3367 3.7993

fHALS 0 46.50 0.0753 0.0101 0.3298 6.1396
3e-3 54.24 0.0281 0.0101 0.3308 6.1959

ADMM 0 45.47 0.0876 0.0101 0.3303 7.0635
3e-4 61.27 0.0128 0.0103 0.3330 7.1136

L = 2

ALS 0 54.33 0.0393 0.0197 0.4245 2.9618
3e-4 58.69 0.0152 0.0149 0.3789 4.3242

MU 0 51.43 0.0330 0.0103 0.3340 5.2181
4 55.91 0.0344 0.0104 0.3352 5.2229

APG 0 52.37 0.0258 0.0103 0.3336 3.6041
5e-4 62.70 0.0215 0.0108 0.3412 5.0651

fHALS 0 55.58 0.0376 0.0109 0.3387 4.9561
8e-3 59.65 0.0083 0.0103 0.3335 5.7812

ADMM 0 51.95 0.0302 0.0103 0.3335 7.2444
3e-4 64.94 0.0062 0.0104 0.3359 7.1910

IV. CONCLUSION

In this paper, we formulated a flexible group nonnegative
matrix factorization with sparse regularization (GNMF-SR)
model for the group analysis of data from multiple sources.
Alternating optimization and alternating direction method of
multipliers (ADMM) strategies were combined to optimize
the GNMF-SR model, in which the common and individual
patterns can be simultaneously extracted while aligning the
common patterns. The experiment of simulated fMRI-like data
demonstrates that the proposed GNMF-SR-ADMM algorithm
has better performance than its counterparts in terms of high
PSNRs and factorization accuracy. Imposing group constraint
and sparse penalty can greatly improve the performance of
NMF-based algorithms.
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