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A B S T R A C T   

Background: Ongoing EEG data are recorded as mixtures of stimulus-elicited EEG, spontaneous EEG and noises, 
which require advanced signal processing techniques for separation and analysis. Existing methods cannot si-
multaneously consider common and individual characteristics among/within subjects when extracting stimulus- 
elicited brain activities from ongoing EEG elicited by 512-s long modern tango music. 
New method: Aiming to discover the commonly music-elicited brain activities among subjects, we provide a 
comprehensive framework based on fast double-coupled nonnegative tensor decomposition (FDC-NTD) algo-
rithm. The proposed algorithm with a generalized model is capable of simultaneously decomposing EEG tensors 
into common and individual components. 
Results: With the proposed framework, the brain activities can be effectively extracted and sorted into the 
clusters of interest. The proposed algorithm based on the generalized model achieved higher fittings and stronger 
robustness. In addition to the distribution of centro-parietal and occipito-parietal regions with theta and alpha 
oscillations, the music-elicited brain activities were also located in the frontal region and distributed in the 
4∼11 Hz band. 
Comparison with existing method(s): The present study, by providing a solution of how to separate common 
stimulus-elicited brain activities using coupled tensor decomposition, has shed new light on the processing and 
analysis of ongoing EEG data in multi-subject level. It can also reveal more links between brain responses and the 
continuous musical stimulus. 
Conclusions: The proposed framework based on coupled tensor decomposition can be successfully applied to 
group analysis of ongoing EEG data, as it can be reliably inferred that those brain activities we obtained are 
associated with musical stimulus.   

1. Introduction 

Listening to music has proven to be an effective strategy to improve 
and rehabilitate the human health (Koelsch, 2012; MacDonald et al., 
2013), especially for people with insomnia, depression, schizophrenia 
or similar illnesses (Maratos et al., 2008; Mössler et al., 2011; Jespersen 
et al., 2015). Therefore, revealing brain activities during listening to 
music has drew an increasing amount of research interest in recent 
decades (Cong et al., 2012b, 2013a; Wang et al., 2016; Li et al., 2016; 
Zhu et al., 2019). The advent of brain imaging techniques has provided 

researchers with the opportunity and insight to probe the brain func-
tions elicited by listening to music. For example, Electro-
encephalography (EEG) is a collection of potentials along the scalp that 
reflect electrical activities of the brain. Since Hans Berger first in-
troduced EEG to the world in 1929 (Berger, 1929), it has been widely 
used in the study of brain functions (Cong et al., 2013a; Huber et al., 
2004; Herrmann, 2001) and diagnosis of neurological diseases/dis-
orders (Jeong, 2004; Adeli and Ghosh-Dastidar, 2010; Siuly et al., 
2016). Unlike spontaneous EEG recorded in resting state (Berger, 1929) 
or event-related potentials (ERP) acquired through repeated 
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presentation of stimuli (Luck, 2014), ongoing EEG is a direct response 
to brain activities in naturalistic and continuous context (e.g. listening 
to music or watching movies) (Busch et al., 2009; Cong et al., 2012b, 
2013a), which makes it possible to study brain functions during real- 
world experiences. In ongoing EEG experiment, the recorded data can 
be viewed as mixtures of stimulus-elicited EEG, spontaneous EEG and 
noises, but how to separate the stimulus-elicited brain activities from 
ongoing EEG data still remains open for research (Cong et al., 2013a, 
2015b; Zhu et al., 2019). Therefore, this study is devoted to the se-
paration and analysis of ongoing EEG data elicited by a 512-s long piece 
of modern tango music. 

In recent years, for the data used in this paper, several studies has 
been tried to extract the music-elicited brain activities. Cong et al. 
constructed a fourth-order EEG tensor of channel × frequency × time 
× subject and the tensor was decomposed using nonnegative tensor 
factorization (NTF) (Cong et al., 2012b). It should be noted that the 
analysis of high-order tensors is based on the assumption that the un-
derlying information in temporal, spatial and spectral modes are con-
sistent among subjects (Wang et al., 2018b). However, we found that 
there was almost no consistent temporal information among subjects as 
shown in Fig. 1. In Cong et al. (2013a) and Zhu et al. (2019), the au-
thors first adopted independent component analysis (ICA) or spatial ICA 
to decompose two-way ongoing EEG data represented by each subject 
and then applied time-frequency analysis and K-means clustering to 
find spatial, spectral and temporal information of interest. Apparently, 
such ICA-based approach did not take into account the high-correlation 
information in space and frequency modes among subjects as shown in  
Fig. 1, and did not fully utilize the inherent structural information of 
the tensors represented spatial, temporal and spectral modes (Cong 
et al., 2015a). In Wang et al. (2016), multilinear partial least squares 
(PLS) was performed on the tensor (represented by ongoing EEG data) 
and matrix (represented by musical features), however, it did not 
consider the nonnegative nature of EEG tensor brought by the time- 
frequency analysis. With the consideration of phase characteristics, Li 
et al. applied the ordered Parallel Factors (PARAFAC) algorithm to the 
ongoing EEG data elicited by the same tango music (Li et al., 2016), but 
no coupled information among subjects was utilized in the data pro-
cessing. Tensors, also termed as multi-way arrays, are the higher-order 
extension of matrices (Kolda and Bader, 2009). Ongoing EEG data can 
be naturally represented as tensors in which the structural information 
of inherent interactions between different modes can be fully utilized 
(Cong et al., 2015a). For example, considering the time-frequency re-
presentation of EEG data in each channel, a third-order tensor of 

channel × time × frequency can be formed (Acar et al., 2007). Tensor 
decomposition allows for simultaneous consideration of spatial, tem-
poral and spectral information, which provides convincing solutions 
with physiological or pathological interpretations (Cichocki, 2013). 
However, when it comes to the analysis of an ensemble of ongoing EEG 
data (e.g., the data collected from different subjects under the same 
tango music), it is unreasonable to represent them as a high-order 
tensor of channel × frequency × time × subject and apply high-order 
tensor decomposition owing to the incomplete consistency in channel, 
time and frequency patterns across subjects. Moreover, when analyzing 
the data through two-way matrix or individual tensor decomposition 
methods, potential interactions among the multi-way structure of ten-
sors or the coupling information among tensors will inevitably be lost 
(Cong et al., 2015a; Mørup, 2011). 

Coupled tensor decomposition, the extension of tensor decomposi-
tion to multi-block tensors, provides a natural framework for the si-
multaneous analysis of heterogeneous tensors with coupling informa-
tion (Zhou et al., 2016; Sørensen et al., 2015; Gong et al., 2016). The 
crucial difference between them is that tensor decomposition processes 
tensors of × frequency × time individually or a higher-order tensor of 
channel × frequency × time × subject (generated by stacking tensors 
from different subjects with the consistent assumption of spatial, tem-
poral and spectral information among the third-order tensors) (Wang 
et al., 2018b; Mørup et al., 2006; Cong et al., 2012a), while coupled 
tensor decomposition generalizes tensor decomposition to cover the 
sharing information across multiple tensor blocks (Sørensen et al., 
2015; Gong et al., 2016; Ermiş et al., 2015; Yokota et al., 2012). 
Compared with its matrix counterparts (Chen et al., 2016; Gong et al., 
2015; Calhoun et al., 2009), coupled tensor decomposition can achieve 
unique solutions and interpretable components, while circumventing 
the independence constraint (Hunyadi et al., 2017; Mørup, 2011). 
Given the data collected under the same stimulus, it is reasonable to 
expect identical or highly correlated stimulus-elicited information 
among subjects, which can be regarded as a prerequisite for applying 
coupled tensor decomposition. However, the inter-component simi-
larity among subjects has rarely been considered in previous methods 
(Cong et al., 2013a; Wang et al., 2016; Li et al., 2016; Zhu et al., 2019). 
Due to individual differences, individual characteristics in each subject 
may lead to inconsistent number of components among tensors (Zhou 
et al., 2016; Ermiş et al., 2015). This inconsistency is not considered in 
the realization of linked canonical polyadic tensor decomposition 
(LCPTD) model in Yokota et al. (2012) and Wang et al. (2019). In ad-
dition, the time consumption load will be extremely heavy due to the 

Fig. 1. Inter- and intra-subject correlations of spatial, spectral and temporal components. The spatial (spectral or temporal) components decomposed from ongoing 
EEG data of 14 subjects by tensor decomposition individually (here we use the fast hierarchical alternative least squares (fast-HALS) algorithm Cichocki and Phan 
(2009)) are concatenated together, and then the correlation coefficients are calculated. 
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high-dimensional and nonnegative nature of ongoing EEG data (Wang 
et al., 2019; Zhou et al., 2012). Our preliminary exploration on the 
LCPTD model in the application of ongoing EEG data processing has 
been reported in Wang et al. (2019). Based on the above issues, the 
specific contributions of this paper can be listed as follows: 

First, regarding the individual differences in ongoing EEG data, this 
study developed a more versatile and flexible model with inconsistent 
component number in each tensor for coupled tensor decomposition. 
This model enables the simultaneous decomposition of common com-
ponents and individual components among tensors. 

Second, based on the model mentioned above, this study proposed 
an efficient data-driven coupled tensor decomposition method termed 
as fast double-coupled nonnegative tensor decomposition (FDC-NTD) 
algorithm. 

Third, in order to discover the reliable links between brain re-
sponses and musical stimulus, this study proposed a general framework 
based on coupled tensor decomposition for ongoing EEG data proces-
sing and analysis. To the best of our knowledge, this is the first attempt 
to apply coupled tensor decomposition to the group analysis of ongoing 
EEG data. 

1.1. Why nonnegative and double-coupled constraints? 

From the perspective of data analysis, imposing specific constraints 
on different modes or components during the decomposition process 
would contribute to obtaining more meaningful solutions (Cichocki, 
2013; Wang et al., 2018b). After performing TFR, nonnegative con-
straint is naturally brought into the EEG data. Correspondingly, the 
temporal, spectral and spatial components of EEG tensor are all non-
negative, representing the specific physical meanings of time envelope, 
spectrum and topography, respectively (Wang et al., 2018b). 

Given the ongoing EEG data collected under the same stimulus, it is 
reasonable to expect coupled (identical or highly correlated) compo-
nents among subjects. Fig. 1 shows the inter- and intra-subject corre-
lations of spatial, spectral and temporal components respectively, 
which are extracted from the ongoing EEG data of 14 subjects by 
conventional tensor decomposition individually (i.e., regardless of any 
coupled information). The detailed information of these data is 

described in Section 3. We can see that the correlations of some com-
ponents among subjects in spatial and spectral modes are very sig-
nificant, while the correlations of temporal components are almost non- 
existent. Due to the sparse nature in spectral mode, of course, the 
correlations of spectral components are not as pronounced as correla-
tions of the spatial components. Therefore, in this study, we consider 
imposing double coupled constraints in spatial and spectral modes. 

2. Fast double-coupled nonnegative tensor decomposition 

2.1. Basic notations and mathematical operations 

Generally, scalars, vectors, matrices and tensors are respectively 
denoted by lowercase, boldface lowercase, boldface uppercase and 
calligraphic boldface uppercase letters, e.g. x x X, , , . and + de-
note real number and nonnegative real number. Operators ( )T and · F
denote transpose and Frobenius norm, respectively. Outer product, 
Khatri-Rao product, Hadamard product and element-wise division are 
denoted by ‘∘’, ‘⊙’, ‘⊛’ and ‘⊘’, respectively. Moreover, 

+U U U U U U U,N n n(1) (2) ( ) (1) ( 1) ( 1)

U U U,N N( ) (1) (2) ( ) and +U U U Un n N(1) ( 1) ( 1) ( )

are defined as U{ } , U{ } n, U{ } , U{ } n, respectively. The mode-n 
matricization of a tensor × × ×I I IN1 2 is termed as (n) with the size 
of × +I I I I I( )n n n N1 1 1 . Please refer to Kolda and Bader (2009) for 
a more detailed description of standard notations and basic tensor 
operations. 

2.2. Model generalization 

Aiming to process multi-block tensors with coupled information, 
Yokota et al. proposed the LCPTD model (Yokota et al., 2012), which 
can enable the simultaneous extraction of common components, in-
dividual components and core tensors. This model assumes that those 
tensors are linked together for sharing some common components. 
However, even if the tensors are generated under the same conditions, 
individual differences between them will present as individual char-
acteristics, which may result in inconsistent number of components in 
each tensor. This inconsistency was not considered in the LCPTD model. 

Fig. 2. Conceptual illustration of generalized LCPTD model with double-coupled constraint (adapted from Cichocki (2013)), in which the factor matrices of mode-1 
and mode-2 among tensors are partially linked, as they share the same components UC

(1) and UC
(2), respectively. 

X. Wang, et al.   Journal of Neuroscience Methods 330 (2020) 108502

3



Therefore, in this section, we first extend a generalized LCPTD model of 
inconsistent component number R s( ). Given a set of Nth-order non-
negative tensors +

× × ×s I I I( ) N1 2 , = …s S1, 2 , , , the generalized 
nonnegative LCPTD model can be expressed as: 

=

= × × ×
=

u u u

U U U

ˆ

,

s s

r

R

r
s

r
s

r
s

r
N s

s s s
N

N s( )

( ) ( )

1

( ) (1, ) (2, ) ( , )

1
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(2, ) ( , )

s( )
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where the tensor +
× × ×ˆ s I I I( ) N1 2 denotes the estimated item of tensor 

s( ). ur
n s( , ) denotes the rth column of n-mode factor matrix 

+
×U n s I R( , ) n s( )

of sth tensor = … = …s S n N( 1, 2, , , 1, 2, , ), and 
= …U u u u[ , , , ]n s n s n s

R
n s( , )

1
( , )

2
( , ) ( , ) . +

× ×s R R R( ) s s s( ) ( ) ( )
represents the sth 

core tensor with non-zero entries r
s( ) only on the super-diagonal ele-

ments …r r r( , , , ), =r R1, 2, , s( ). Most importantly, in general-
ized LCPTD model, each factor matrix U n s( , ) includes two parts: 

+
×UC

n I L( ) n n, L R0 n
s( ) and +

×UI
n s I R L( , ) ( )n s n( )

. UC
n( ) shared by all 

tensors represents the coupling information among them, while UI
n s( , )

corresponds to the individual characteristics of each tensor. Fig. 2 gives 
the conceptual illustration of generalized double-coupled tensor de-
composition model. 

2.3. Model realization 

In this section, aiming to extract the constrained factor matrices and 
core tensors s( ), a solution based on fast-HALS algorithm for the 
generalized LCPTD model is provided. Note that the scalar factor r

s( ) of 
core tensor s( )can be absorbed into one denormalized component, 
such as ur

N s( , ), so the cost function using squared Euclidean distance 
minimization can be represented in a simplified form as follows: 

= =
u u umin

s
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s

r
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r
s
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s
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= = = =u n N r R s S1, 1 1, 1 , 1 .r
n s s( , ) ( )

The above optimization problem can be converted into max R( )s( )

suboptimization problems via HALS algorithm (Cichocki et al., 
2007), in which ur

n s( , ) can be calculated sequentially and iteratively. 
To address the issue of high computation cost, we further introduce 
the fast-HALS algorithm (Cichocki and Phan, 2009) to the proposed 
model. Therefore, the updating rule of ur

n s( , ) can be defined as fol-
lows: 

=
>

u
r L

r L

/ , ,

/ , ,
r

n s s r
n s

s r
n s

n

r
n s

r
n s
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( , )
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where +[·] means “half-rectifying” nonlinear projection to obtain 
non-negative components and r

n s( , ) is defined as: 

= +[ ]U U u{ } [ ]r
n s

n
s s

r
n s

n
s

r r
n s
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( ) ( ) ( , )
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with = U U U U( ) ( )n
s s T s n s T n s

( )
( ) ( ) ( ) ( , ) ( , ) and n

s
( )
( ) is the mode-n ma-

tricization of tensor s( ). The scaling coefficients r
n s( , ) can be for-

mulated as: 

=
=

u u n N
n N

, .
1, .r

n s r
N s T

r
N s

( , )
( , ) ( , )

(5)  

In each iteration, we perform the updates of ur
n s( , ) with the indexes 

= … = …n N s S1, 2, , , 1, 2, , and = …r R1, 2, , s( )

successively, while normalizing it to unit variance by 
u u u/r

n s
r

n s
r

n s( , ) ( , ) ( , )
2 except n ≠ N. As illustrated in (3), the calcula-

tion of common component ur
n s( , ) depends on all tensors and the in-

dividual component needs to be calculated separately. These compo-
nents are alternatively updated one after another until convergence. In 
this study, considering that those nonnegative tensors represented by 
ongoing EEG data are assumed to be coupled in spatial and spectral 
modes (i.d., = >L n0 , 2)n , the proposed algorithm is termed as fast 
double-coupled nonnegative tensor decomposition (FDC-NTD) algo-
rithm. We summarize the proposed FDC-NTD algorithm in Algorithm 1, 
and its detailed derivation is given in the appendix. 

Algorithm 1. FDC-NTD algorithm  

3. Experiments and methods 

In this section, we provide a comprehensive framework for ongoing 
EEG data processing and analysis based on the proposed FDC-NTD al-
gorithm, aiming to find commonly appearing brain activities elicited by 
naturalistic and continuous musical stimulus. Undoubtedly, such 
common information shared by the majority of subjects is more reliable 
than individual information from particular subject (Cong et al., 2013a;  
Lee and Choi, 2009). Through TFR and FDC-NTD algorithm, tensors 
with dimensions of channel × time × frequency can be constructed 
and decomposed into common and individual components in the spa-
tial, spectral and temporal modes. Meanwhile, five long-term musical 
features can be extracted from the music. Correlation analysis and 
hierarchical clustering are performed together to determine the cluster 
of interest. Fig. 3 illustrates the overall flow diagram of ongoing EEG 
data processing and analysis. 

3.1. Data acquisition & preprocessing 

The ongoing EEG data collected from 14 participants aged from 20 
to 46 years old were used in this study. All participants were right- 
handed and healthy, without musical expertise and any problem of 
hearing loss or history of neurological disorders. The musical stimulus 
adopted an 8.5-min piece of modern tango by Astor Piazzolla (Alluri 
et al., 2012). The data were recorded using BioSemi bioactive electrode 
caps with the sampling rate of 2048 Hz, according to the international 
10–20 system. The collected EEG data were preprocessed off-line using 
EEGLAB toolbox (Delorme and Makeig, 2004) and MATLAB R2016b, 
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down-sampled to 256 Hz, and filtered by high-pass and low-pass filters 
with 1 Hz and 30 Hz cutoff frequencies. Detailed information about 
data acquisition and preprocessing can be found in our previous work 
(Cong et al., 2013a). 

3.2. Tensor representation 

TFR of the preprocessed EEG data was obtained by short-time 
Fourier transform (STFT). The Hamming window was adopted as the 
window function, with the window length of 3 s and 66.7% overlap 
ratio between windows. The number of Fourier points in each window 
was 1024, which was four times of the sampling rate. Power spectrum 
of EEG data are often evaluated in several frequency bands, such as 
delta (0.5∼4 Hz), theta (4∼8 Hz), alpha (8∼13 Hz) and beta (13∼30 
Hz) (Siuly et al., 2016). According to previous work (Sammler et al., 
2007; Lin et al., 2008, 2010; Shahin et al., 2009; Schaefer et al., 2011;  
Cong et al., 2012b, 2013a; Li et al., 2016), frequency fluctuations of 
brain activities elicited by musical stimulus are generally distributed in 
theta and alpha bands, hence in this study, frequency ranging from 4 to 
13 Hz was used for further analysis. Therefore, third- order tensors 
including the spectrograms of EEG data with dimensions of 46 (fre-
quency bins) × 510 (time samples) × 64 (space channels) were gen-
erated for 14 participants, as shown in Fig. 4. 

3.3. Musical feature extraction 

In this study, five long-term musical features (tonal and rhythmic,  
Fig. 5) were extracted by a frame-by-frame analysis method, providing 
a bridge for analyzing the connections between musical stimulus and 
ongoing EEG (Alluri et al., 2012; Cong et al., 2013a; Zhu et al., 2019). 
The duration of each frame was 3 s and overlap ratio between frames 
was 66.7%, which was consistent with the window settings in the STFT 
of EEG data. Therefore, the corresponding temporal courses with 510 
samples were generated for those features. Furthermore, for the tonal 
features, Mode denotes the strength of major or minor mode, and Key 
Clarity is the measure of the tonal clarity (Alluri et al., 2012). For the 
rhythmic features, Fluctuation Centroid is defined as the geometric 
mean of the fluctuation spectrum, and it represents the global reparti-
tion of rhythm periodicities within the range of 0∼10 Hz, indicating 
the average frequency of these periodicities (Alluri et al., 2012). Fluc-
tuation entropy is the Shannon entropy of the fluctuation spectrum, and 
it represents the global repartition of rhythm periodicities. Pulse Clarity 
is regarded as an estimate of clarity of the pulse. The details of musical 
features and extraction method can be found in Latrillot and Toiviainen 
(2007), Alluri et al. (2012), and Cong et al. (2013a). 

3.4. FDC-NTD implementation 

3.4.1. Parameter initialization 
The input factor matrices of spatial, spectral and temporal modes 

were initialized with uniformly distributed pseudorandom numbers 
generated by MATLAB function rand. 

3.4.2. Termination criteria 
In this study, two iteration termination criteria of FDC-NTD algo-

rithm were adopted. (a) | <Fit Fitnew old , it means that the Fit 
change between the adjacent iterations should be smaller than the 
predefined threshold (e.g., = 1e 6 . Tensor fitting is defined as 

=Fit [1 ˆ / ]S s
S s s

F
s

F
1

1
( ) ( ) ( ) , where s( ) and ˆ s( ) are ori-

ginal and recovered tensors respectively. Furthermore, the relative 
error is defined as =RelErr [ ˆ / ]s

S s s
F

s
F1

( ) ( ) ( ) . (b) The 
maximum number of iterations is no more than 1000. 

3.4.3. Component number selection 
To determine the number of components, a multi-dimensional 

model order selection technique termed as R-dimensional minimum 
description length (R-D MDL, da Costa et al., 2011) was adopted in this 
study. The R-D MDL method based on information theoretic criterium 
extended 1-D MDL (modified MDL) method to the multi-dimensional 
case by using the global eigenvalues, providing low computational 
complexity and maintaining good performance even for lower SNR 
scenarios (da Costa, 2010). Its optimization problem is given as follows: 

= +d I P g P
P

p P Iˆ argmin ( )log( ( )
( )

) ( , , )
P

G
G

G
G( )

( )

( )
( )

(6) 

where the penalty function p P I( , , )G( ) is chosen as 
P P I(2 )log( )G1

2
( ) . d̂ denotes an estimated of the true model order 

d g P, ( )G( ) and P( )G( ) represent the geometric and arithmetic means of 

Fig. 3. FDC-NTD-based ongoing EEG data analysis includes the following steps: (1) data acquisition & preprocessing; (2) musical feature extraction; (3) tensor 
representation; (4) FDC-NTD implementation; (5) correlation analysis; (6) hierarchical clustering; (7) cluster selection of interest. 

Fig. 4. Third-order tensors for 14 participants, and each tensor includes three 
dimensions of 64 channels, 46 frequency bins (4∼13 Hz) and 510 time samples. 
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the P smallest global eigenvalues, respectively. I is set as 
= …I I I Imax( , , , )N1 2 , and G( ) is the total number of adaptively 

defined global eigenvalues. Therefore, for the EEG tensors of 14 sub-
jects, the number of components were respectively selected as {44, 34, 
36, 38, 36, 39, 35, 35, 34, 37, 33, 36, 34, 35} via R-D MDL algorithm 
adapted from IPM software.1 

Regarding the number of common components, we first ran 10 
times of individual fast-HALS decompositions on each EEG tensor and 
then performed correlation analysis on the spatial/spectral modes be-
tween any two subjects successively. We obtained the averaged corre-
lation coefficients =r 0.8714 and =r 0.9031 at level <p 0.001 on the 
two modes respectively. There was an average of 26 high-correlated 
spatial/spectral components between any two subjects (the correlation 
coefficients of 0.7 to 1 are considered to represent high or very high 
correlations; Asuero et al., 2006). Therefore, considering the hypothesis 
of double-coupled constraint, we set = =L L 261 2 and =L 03 . 

3.5. Correlation analysis 

After extracting the components using FDC-NTD algorithm, it is 
necessary to determine which ones are relevant to musical stimulus. 
According to our previous work Cong et al. (2012b, 2013a), correlation 
analysis was conducted between temporal courses of extracted tem-
poral components and temporal courses of musical features, aiming to 
find the brain activities elicited by musical stimulus. Pearson correla-
tion analysis was applied to calculate the correlation coefficient, and 
then Monte Carlo method and permutation test were used to determine 
significant thresholds of correlation and correct for multiple compar-
isons (Alluri et al., 2012; Groppe et al., 2011). Moreover, a threshold (at 
level <p 0.05 ) of correlation coefficient was calculated by a musical 
feature and R s( ) temporal components from each participant. Those 
temporal components which are significantly correlated with temporal 
courses of musical features were considered to be relevant to musical 
stimulus, and will be of interest and further analyzed. Fig. 6 shows an 
example of spatial, spectral and temporal components of EEG data, 
represented as topography, power spectrum and waveform, respec-
tively. The temporal component was significantly correlated with the 
musical feature of ‘Fluctuation Centroid’ (i.e., ). In addition, we can see 
that the occipital region of subject #11 is activated with theta oscilla-
tion. 

3.6. Hierarchical clustering 

It should be noted that the correlations in Fig. 1 include two parts: 
auto-correlation (intra-subject) and cross-correlation (inter-subject). 
Therefore, in addition to the high spatial cross-correlation of inter- 
subject, we also found the high correlations between spatial compo-
nents within the subject. Different from imposing coupled constraints to 
address inter-subject correlations, in this study, we adopted hier-
archical clustering to merge the highly correlated spatial components 
within the subject. Through the FDC-NTD algorithm, L1 common spatial 
and L2 spectral components from the ongoing EEG can be extracted. By 
virtue of the coupled constraints across subjects, we only need to cluster 
the L1 common spatial components. 

Moreover, clustering L1 spatial components is simpler than clus-
tering all of the spatial components extracted from 14 subjects by in-
dependent component analysis (ICA) individually (Cong et al., 2013a). 
For stable clustering, we adopted hierarchical agglomerative clustering 
algorithm, in which complete linkage was used to calculate the furthest 
distance (here we used correlation) between pairs of clusters and the 
pairs of clusters with the nearest distance were merged. We applied PCA 
to L1 spatial components, and the number of principal components with 
99% explained variance was selected as the number of clusters. Figs. 7 
and 8 give some illustrations and results relevant to hierarchical clus-
tering analysis about 26 spatial components. As shown in Fig. 7(a), 
when the cumulative explained variance exceeds the threshold of 99% 
(red dash line), 4 is selected as the number of clusters. Therefore, the 
hierarchical tree in the hierarchical clustering is spit into 4 clusters by 
cutting branches (red dash line). Fig. 7(c) shows the averaged spatial 
maps of each cluster. In cluster #1, there is only one component. For 
clusters #2, #3 and #4, the mean correlation coefficients between 
spatial components within each cluster are 0.9518, 0.9268 and 0.8397, 
and the corresponding standard deviations (SDs) are 0.0502, 0.0596 
and 0.1314, respectively. This indicates that the components are highly 
correlated with each other in each cluster. The low correlations of 
averaged spatial components between clusters, as shown in Fig. 8, also 
demonstrate the accuracy of clustering results. 

3.7. Cluster selection of interest 

In group analysis, phenomena commonly appearing in most subjects 
are more attractive than the individual ones of a particular subject. 

Fig. 6. The topography, power spectrum and waveform of the 1st EEG com-
ponents from subject #11 of Run #1. The temporal course of Comp #1 is sig-
nificantly correlated with the temporal course of ‘Fluctuation Centroid’ with a 
correlation coefficient of 0.1128 and a significant correlation threshold of 
0.1064 (at level p  <  0.05). 

Fig. 5. Temporal courses of five musical features, including Fluctuation 
Centroid, Fluctuation Entropy, Key Clarity, Mode and Pulse Clarity. 

1 https://lasp.unb.br/index.php/publications/softwares/ 
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Therefore, in this section, our object is to determine the brain activities 
shared by the majority of subjects from the ongoing EEG data. Through 
comprehensively analyzing the results from correlation analysis (tem-
poral components and musical features) and hierarchical clustering 
(common spatial components), we can obtain q clusters of spatial 
components whose parallel temporal components satisfy the threshold 
of significant correlation coefficients (with any musical feature). If the 
number of subjects contributing to a cluster exceeds half of the total 
number of subjects, the cluster will be selected as the cluster of interest 
and kept for further analysis in this study (Cong et al., 2013a). For each 
cluster of interest, the corresponding brain responses in most subjects 
are considered to be related to the musical stimulus. In Table 1, the 
subjects contributing to the 4 clusters in Fig. 7 are listed separately, and 
clusters #2, #3 and #4 are selected as the cluster of interest based on 
the predefined criterion. For the sake of simplicity, here we integrate 
the clustered spatial components and their corresponding temporal and 
spectral components into category of the cluster of interest. 

4. Results 

The uniqueness of the decomposition is critical to the interpretation 
of extracted components (Hunyadi et al., 2017). For the ongoing EEG 
data contaminated with noise, it is difficult to verify that the recovered 

Fig. 7. Hierarchical clustering results of 26 spatial components of Run #7. (a) Selection of the number of clusters; (b) dendrogram output of hierarchical clustering; 
(c) averaged topographies of clusters and correlations between components within the clusters. 

Fig. 8. Correlations of spatial maps (the averaged spatial component in each 
cluster) between clusters. 

Table 1 
Subject distribution of 4 clusters after comprehensively analyzing the results of correlation analysis and hierarchical clustering of Run #1. ‘1’ and ‘–’ indicate that the 
subject contributes or does not contribute to the cluster. The number of subjects contributing to cluster #2, #3 and #4 exceed half of the total number of subject.                  

Subject #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 Total  

Cluster #1 – – – – – – 1 – – 1 – – – 1 3 
Cluster #2 1 – 1 – 1 – – – – 1 1 1 1 1 8 
Cluster #3 1 1 1 – 1 1 1 1 1 1 1 1 1 – 12 
Cluster #4 1 1 1 – 1 1 1 – – 1 – 1 – – 8    
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components are the true versions of the observed tensors. Therefore, in 
order to validate the reliability and stability of the solutions, we per-
formed FDC-NTD algorithm 100 times on the generalized LCPTD model 
in this experiment. At the same time, to prove the validity of the gen-
eralized model, we also ran 100 times of Fast-HALS algorithm on the 
LCPTD model (for simplicity, we named it the LCPTD algorithm). Ac-
cording to Cong et al. (2012b), we chose 35 as the number of compo-
nents in the LCPTD algorithm. 

The experiments were carried out with the following computer 
configurations: CPU: Intel Core i5-7500 @ 3.40Hz 3.41Hz; Memory: 
16.00 Gb; System: 64-bit Windows 10; Matlab R2016b. For data vi-
sualization, Figs. 10 and 11 were plotted using the graphics toolbox 
gramm2 (Morel, 2018). 

As shown in Table 2, we compare FDC-NTD and LCPTD algorithms 
in five aspects including objective function value (Obj), relative error 

Table 2 
Performance comparison between FDC-NTD and LCPTD algorithms. Evaluation indices include Obj, RelErr, Fit and Time averaged from 100 runs, and the number of 
occurrence of Clusters #I, #II and #III in 100 runs.           

Obj RelErr Fit Time/s Cluster #I Cluster #II Cluster #III 
FDC-NTD 1.1263e + 11 3.9202 0.7200 164.06 83/100 100/100 96/100  

LCPTD 1.1669e+11 3.9634 0.7169 153.00 82/100 100/100 93/100 

Obj: objective function value; RelErr: relative error; Fit: tensor fitting; Time: running time.  

Fig. 9. Illustrations of averaged clusters of interest #I, #II and #III obtained from 100 runs. Spatial information, presented by the averaged topographies (left 
column), indicate the activations of centro-parietal, occipito-parietal and frontal regions of the brain elicited by musical stimulus, respectively. Overall spectrograms 
of clusters #I, #II and #III (right column) from 100 runs illustrate the frequency oscillations over the entire period. For cluster #I, the numbers of theta and alpha 
components are 1155 and 395. For cluster #II, the numbers of theta and alpha components are 964 and 2925. For cluster #III, the numbers of theta and alpha 
components are 964 and 771. 

Fig. 10. Distribution of the number of the subjects contributing to the clusters 
#I, #II and #III in 100 runs. Cluster #1, #II and #III appeared 83, 100 and 96 
times in 100 runs, respectively. 2 https://github.com/piermorel/gramm 
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(RelErr), tensor fitting (Fit), running time (Time) and occurrence 
probabilities of clusters #I, #II and #III. For the averaged Obj, RelErr 
and Fit value, the FDC-NTD algorithm performs slightly better than 
LCPTD algorithm, but requires more consuming time. Through corre-
lation analysis, hierarchical clustering and cluster selection of interest, 
three kinds of clusters of interest are obtained from 100 decomposition 
results. For example, the corresponding averaged topographies ob-
tained by FDC-NTD algorithm are plotted in Fig. 9. For the FDC-NTD 
algorithm, the probabilities of clusters #I, #II, and #III occurring in 
100 runs reach 83% (83/100), 100% (100/100) and 96% (96/100), 
while the occurrence probabilities of clusters #I, #II, and #III obtained 
by LCPTD algorithm are 82% (82/100), 100% (100/100) and 93% (93/ 
100). It should be noted that the FDC-NTD algorithm is more stable 
than the LCPTD algorithm. 

Fig. 9 also illustrates the overall spectrograms of clusters #I, #II and 
#III obtained in FDC-NTD algorithm. The spectrogram can be generated 
by back-projection of spectral and temporal components, presenting a 
qualitative and quantitative evaluation of frequency oscillations over 
the entire period. Regarding cluster #I, the topography reveals that the 
centro-parietal region of the brain was activated with quite a lot theta 
oscillations (4∼7 Hz, 74.52%, 1155/1550) but little alpha oscillations 
(around 10 Hz, 25.48%, 395/1550). Conversely, the occipito-parietal 
region of the brain is activated with significant alpha oscillations 
(8∼13 Hz, 75.21%, 2925/3889), accompanied by a small amount of 
theta oscillations (4∼8 Hz, 24.79%, 964/3889) in cluster #II. In ad-
dition, we also obtained the topography representing the activation of 

frontal region of the brain, as shown in cluster #III. The frequency 
oscillations of cluster #III are distributed in the range of 4∼11 Hz 
(theta-55.56%, 964/1735, alpha-44.44%, 771/1735). 

The number of subjects contributing to the clusters #I, #II and #III 
in each run is visualized in Fig. 10. Regarding cluster #II, the number of 
subjects in each run is concentrated at 12, 13 and 14 (green circles). 
The number of subjects contributing to clusters #I and #III in 100 runs 
is mostly distributed in 7, 8, 9 and 10 (pink and blue circles). Fur-
thermore, the gramm plot of spatial correlations within and between 
runs for clusters #I, #II and #III in 100 runs is illustrated in Fig. 11. 
From Fig. 11(a), we can see that the distribution of cluster #II is more 
compressed than that of clusters #I and #III. Regarding cluster #II, the 
averaged mean and SD of correlations in 100 runs are 0.8949 and 
0.0949. For cluster #I, the averaged mean and SD of correlations in 83 
runs are 0.8959 and 0.0985. For cluster #III, the averaged mean and SD 
of correlations in 96 runs are 0.8459 and 0.1402, which are inferior to 
the ones of clusters #I and #II. Fig. 11(b) illustrates the correlation 
coefficients between runs for clusters #I, #II and #III. We can find that 
the cluster #II is more stable with less outliers. Regarding cluster #II, 
the mean and SD of correlation coefficient are 0.9813 and 0.0182. For 
cluster #I, the mean and SD are 0.9570 and 0.0492. For cluster #III, the 
mean and SD are 0.9591 and 0.0449. From the results in Fig. 11, we can 
conclude that spatial components within and between runs for each 
cluster are highly correlated with each other. It strongly demonstrates 
the accuracy and stability of clustering results obtained by FDC-NTD 
algorithm. 

5. Discussion 

Tensor decomposition and group-level ICA methods have been 
generally used to extract stimulus-elicited components from a higher- 
order EEG tensor or concatenated EEG matrix of different subjects for 
group- level analysis in the cognitive research (Eichele et al., 2011; 
Cong et al., 2012b, 2015a). Only if the number of sources or the hidden 
information in EEG data of different subjects is consistent, the above 
methods will make sense to stack/concatenate the data to the tensor/ 
matrix for analysis (Cong and He, 2013b; Wang et al., 2018b). In-
dividual ICA method is not naturally suited to explore group inferences 
since the result fusion across individuals is sometimes a non-trial pro-
blem (Eichele et al., 2011). Coupled tensor decomposition, an extension 
of tensor decomposition to multi-block tensors, has been widely utilized 
to explore the potential common phenomenon across tensors (Sørensen 
et al., 2015; Ermiş et al., 2015; Gong et al., 2016). Therefore, in this 
study, a comprehensive framework based on coupled tensor decom-
position applying to group-level analysis of ongoing EEG data during 
free listening to a 8.5-min long tango music was investigated. 

The theoretical principle of coupled tensor decomposition is that the 
different tensors share some of the same or partially identical factor 
matrices (Zhou et al., 2016; Yokota et al., 2012). For the ongoing EEG 
data, we indeed found that there were highly correlated information in 
both spatial and spectral modes among the tensors represented from 14 
subjects (see it in Fig. 1), which can be regarded as a prerequisite for 
applying coupled tensor decomposition in this study. Meanwhile, there 
is also individual information for each tensor, which may lead to in-
consistent number of components among tensors. Considering the 

Fig. 11. Spatial correlations within and between runs for clusters #I, #II and 
#III in 100 runs. (a) Distribution of means and SDs of correlation coefficients 
calculated by the internal spatial components in each run for clusters #I, #II 
and #III. (b) Illustration of correlation coefficients calculated by the averaged 
spatial components between runs for clusters #I, #II and #III. 
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common and individual information with the inconsistent number of 
components, we extended the LCPTD model to a general case. For the 
validation of the generalized model, we ran 100 times of two algorithms 
to compare their performance as shown in Table 2. It indicates that the 
our generalized LCPTD model has higher model fit and stronger ro-
bustness than the LCPTD model, and the performance development 
depends to a large extent on the actual number of components we use. 
For clusters whose occurrence rate are not 100%, this is mainly due to 
the inconsistency of local optimal solutions caused by random in-
itialization in 100 algorithm implementations. Wang et al. demon-
strated that sparsity regularization can improve the extraction stability 
of EEG components (Wang et al., 2018a), which provides a good per-
spective for our future work. 

From the results of 100 FCD-NTD algorithm implementations, we 
found that the brain activities of selected clusters #I, #II and #III re-
levant to the musical stimulus were mainly distributed in the bands of 
4∼8 Hz (theta), 8∼13 Hz (alpha) and 4∼11 Hz, and located in the 
centro-parietal, occipito-parietal and frontal regions respectively. For 
the same data in this study, such theta and alpha activities in the central 
and occipital regions were reported in Cong et al. (2013a), but no such 
activities in the frontal region. For the ICA-based method in Cong et al. 
(2013a), posterior K- means clustering was adopted to cluster all of the 
spatial components extracted from 14 subjects individually. However, 
the prior coupling information present in spatial and spectral modes 
was not employed when extract the hidden information, which may 
result in the failure of information extraction. In addition, clustering 
L1,2 common spatial components is obviously much simpler and stable 
than clustering all of the spatial components in Cong et al. (2013a), 
where the mean correlation coefficients between spatial maps in clus-
ters #I and #II were only 0.85 and 0.81 respectively. Regarding the 
clusters #I and #II, the significant theta and alpha oscillations were 
also reported in Li et al. (2016), where Li et al. utilized tensor de-
composition imposing EEG phase characteristics to explore the brain 
responses to the naturalistic and continuous musical stimulus. Cong 
et al. extracted only alpha activity in the posterior region using fourth- 
order nonnegative tensor decomposition without considering the ex-
istence of individual information for each subject (Cong et al., 2012b). 
Compared to previous work, the proposed FDC-NTD algorithm can 
avoid strong constraint that imposes consistency on temporal, spatial 
and spectral modes between EEG tensors (Cong et al., 2012b; Li et al., 
2016). In addition, it can utilize the multi-way structure of tensor-re-
presented data and the coupled relationship across tensor blocks, and 
can decompose EEG tensors into common components and individual 
components in each mode. The extraction of common components 
among data makes it easier to discover the commonly appearing brain 
activities among majority of subjects. The high means and low SDs of 
correlation coefficients within/between 100 runs can demonstrate the 

stability and practicability of coupled tensor decomposition applied to 
the group-level analysis of ongoing EEG data. 

Besides the studies of ongoing EEG analysis elicited by naturalistic 
and continuous musical stimulus, previous work on the use of EEG 
activities to analyze emotion and musical stimuli can provide some 
solid references for the results in this study (Sammler et al., 2007; Lin 
et al., 2008, 2010; Schmidt and Trainor, 2001). During listening to the 
emotional music, the spectrum power asymmetry indexes located in the 
brain areas corresponding to RASM12 (namely, 12 symmetric electrode 
pairs including Fp1-Fp2, F7-F8, F3-F4, FT7-FT8, FC3-FC4, T7-T8, P7- 
P8, C3-C4, TP7-TP8, CP3-CP4, P3-P4, and O1-O2) are sensitive to the 
brain activations associated with emotion responses (Lin et al., 2008). 
Lin et al. found the frontal and parietal lobes across frequency bands 
including theta and alpha contributed a lot in the emotion recognition 
during music listening (Lin et al., 2010). According to Sammler et al. 
(2007), the increase of theta power over the frontal midline was asso-
ciated with pleasant music, while the frontal alpha asymmetry of on-
going EEG activity was used to distinguish the emotional valence of 
musical stimuli (Schmidt and Trainor, 2001). The previous studies re-
garding EEG and musical stimuli verified the plausibility of our findings 
to some extent. 

In conclusion, we proposed a comprehensive framework based on 
coupled tensor decomposition for the group analysis of ongoing EEG 
data, elicited by naturalistic and continuous musical stimulus. 
Specifically, the proposed framework includes the following seven 
steps: data acquisition & preprocessing, musical feature extraction, 
tensor representation, algorithm implementation, correlation analysis, 
hierarchical clustering and cluster selection of interest, aiming to dis-
cover commonly appearing brain activities among subjects. The results 
obtained in the proposed framework illustrate that our findings are in 
line with the results of previous studies, and it can be inferred that those 
brain activities we extracted are associated with musical stimulus. 
Furthermore, the proposed framework based on coupled tensor de-
composition in this study provides a new perspective for the processing 
and analysis of multi- subject ongoing EEG data. Coupled tensor de-
composition methods with different optimization strategies can be ap-
plied for comparison to find more convincing solutions when processing 
and analyzing ongoing EEG data, which will be one of our future work. 
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Appendix A. Derivation of FDC-NTD algorithm 

The minimized optimization problem in (2) can be converted into Rmax( )s( ) rank-1 tensor approximation problems via HALS algorithm (Cichocki 
et al., 2007), which can be solved sequentially and iteratively as follows: 

= =
= =

u u u u uDmin ( ) { } ,F
r

r
n s

s

S

r
s

r
s

r
N s

F
s

S

r n
s

r
n s

r
s

F
( ) ( , )

1

( ) (1, ) ( , ) 2

1
,( )

( ) ( , ) ( ) 2nT

(7) 

X. Wang, et al.   Journal of Neuroscience Methods 330 (2020) 108502

10



where u u ur
s s

k r
R

k
s

k
s

k
N s( ) ( ) (1, ) (2, ) ( , )s( )

and r n
s
,( )

( ) is the mode-n matricization of r
s( ). Mathematically, using the trace property of matrix, (7) 

can be further represented as: 

=
=

( ) ( )u u u u uDmin ( ) tr[ { } { } ]F
r

r
n s

s

S

r n
s

r
n s

r
s

r n
s

r
n s

r
s T( ) ( , )

1
,( )

( ) ( , ) ( )
,( )

( ) ( , ) ( )nT nT

(8)  

We can calculate the gradient of uD ( )F
r

r
n s( ) ( , ) in (8) with respect to ur

n s( , ) as: 

=
+

+ >
=

[ ]u
u

u u u u

u u u u

D r L

r L

( ) 2 { } 2 { } { } ,

2 { } 2 { } { } ,

F
r

r
n s

r
n s s

S

r n
s

r
s

r
n s

r
s

r
s

n

r n
s

r
s

r
n s

r
s

r
s

n

( ) ( , )

( , ) 1
,( )

( ) ( ) ( , ) ( ) ( )

,( )
( ) ( ) ( , ) ( ) ( )

n nT n

n nT n

(9)  

For the solution of ur
n s( , ), we only need to set the gradient in (9) to zero. Therefore, the learning rule of ur

n s( , ) obtained via HALS strategy can be 
formulated as: 
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putational cost, especially for large-scale problems (Cichocki and Phan, 2009). Since the fast-HALS algorithm has been proven to be more efficient in  
Cichocki and Phan (2009) than HALS algorithm, in this study, we further extend it to the generalized LCPTD model. Inspired by fast-HALS algorithm, 
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At last, we obtain the learning rule of ur
n s( , ) based on fast-HALS algorithm Cichocki and Phan (2009) in generalized LCPTD model (1) as follows: 

=
>

u
r L

r L

/ ,

/ ,
r

n s s r
n s

s r
n s

n

r
n s

r
n s

n

( , )
( , ) ( , )

( , ) ( , )
(14) 

with the definitions of r
n s( , ) in (12) and r

n s( , ) in (5). The mode-n matricization n
s( ) in r

n s( , ) only needs to be performed once in initialization, which 
greatly improves the computation efficiency of the proposed FDC-NTD algorithm.  
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