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ABSTRACT

Epileptic seizure detection using scalp electroencephalogram (sEEG) and intracranial electroencephalo-
gram (iEEG) has attracted widespread attention in recent two decades. The accurate and rapid detection
of seizures not only reflects the efficiency of the algorithm, but also greatly reduces the burden of manual
detection during long-term electroencephalogram (EEG) recording. In this work, a stacked one-
dimensional convolutional neural network (1D-CNN) model combined with a random selection and data
augmentation (RS-DA) strategy is proposed for seizure onset detection. Firstly, we segmented the long-
term EEG signals using 2-s sliding windows. Then, the 2-s interictal and ictal segments were classified by
the stacked 1D-CNN model. During model training, a RS-DA strategy was applied to solve the problem of
sample imbalance, and the patient-specific model was trained with event-based K-fold (K is the number
of seizures per patient) cross validation for detecting all seizures of each patient. Finally, we evaluated the
performances of the proposed approach in the two levels: the segment-based level and the event-based
level. The proposed method was tested on two long-term EEG datasets: the CHB-MIT sEEG dataset and
the SWEC-ETHZ iEEG dataset. For the CHB-MIT sEEG dataset, we achieved 88.14% sensitivity, 99.62%
specificity and 99.54% accuracy in the segment-based level. From the perspective of the event-based
level, 99.31% sensitivity, 0.2/h false detection rate (FDR) and mean 8.1-s latency were achieved. For the
SWEC-ETHZ iEEG dataset, in the segment-based level, 90.09% sensitivity, 99.81% specificity and 99.73%
accuracy were obtained. In the event-based level, 97.52% sensitivity, 0.07/h FDR and mean 13.2-s latency
were attained. From these results, we can see that our method can effectively use both sEEG and iEEG
data to detect epileptic seizures, and this may provide a reference for the clinical application of seizure
onset detection.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

detection of seizures by reviewing long-term and continuous EEG
is a time-consuming and laborious task, the automated and timely

Epilepsy is a chronic neurological disease, which results from
sudden abnormal and synchronous electrical activities of brain
neurons. It has affected nearly 1% of the world’s population, and
about 30% of people with epilepsy are resistant to antiepileptic
drugs [1]. Electroencephalogram (EEG) has become an effective
screening technique in diagnosing epilepsy. Since the manual
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detection of seizures can greatly improve diagnostic efficiency and
reduce workload.

EEG-based analysis for the automated detection of seizures has
been widely explored in the last two decades. In the previous
researches about EEG-based seizure detection, the short-term
Bonn EEG dataset [2] and the long-term CHB-MIT scalp EEG (SEEG)
dataset [3] were the two most commonly used datasets [4]. For the
short-term Bonn EEG dataset, many conventional machine learn-
ing and deep learning methods, including Support Vector Machine
(SVM) [5-7], Random Forest (RF) [8], K-Nearest Neighbor (KNN)
[9,10], Artificial Neural Network (ANN) [11], Convolutional Neural

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.06.048&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neucom.2021.06.048
http://creativecommons.org/licenses/by/4.0/
mailto:tka@jyu.fi
mailto:cong@dlut.edu.cn
https://doi.org/10.1016/j.neucom.2021.06.048
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

X. Wang, X. Wang, W. Liu et al.

Networks (CNN) [12-14] and Long-Short Term Memory (LSTM)
[15], have been applied to analyze this dataset for seizure detection
and obtained the accuracy ranging from 88.87% to 100%. Although
these methods achieved high performances on the short-term
Bonn EEG dataset, this benchmark clinical dataset was a small
and special-selected dataset. As stated in [2], the short-term Bonn
EEG dataset consisted of 500 single-channel EEG segments of 23.6-
s duration (200 sEEG segments and 300 intracranial EEG (iEEG)
segments), and each segment was cut out from continuous EEG
recordings after visual inspection. However, in the real world, the
EEG recordings of people with epilepsy usually last from several
hours to several weeks. Therefore, the analysis of long-term and
continuous EEG data for seizure detection may have more practical
significance.

For the long-term CHB-MIT sEEG dataset (24 patients, about
916 h and 198 seizures), an overview of works is briefly intro-
duced. In conventional machine learning methods, the studies
[7,16] used SVM classifiers for seizure detection and achieved the
sensitivity ranging from 96.81% to 97.34% and the specificity rang-
ing from 97.26% to 97.50%. In [ 17], seven classifiers, including SVM,
Ensemble, KNN, Linear Discriminant Analysis (LDA), Logistic
Regression (LR), Decision Tree (DT) and Naive Bayes (NBs), com-
bined with the strategy of channel selection were used for calssifi-
cation, and the KNN finally achieved the highest accuracy of 84.8%.
In [18], Alickovic et al. applied four classifiers (SVM, RF, Multilayer
perceptron (MLP) and KNN) simultaneously to classify the feature
samples that were extracted by Discrete Wavelet Transform
(DWT), empirical mode decomposition (EMD) and wavelet packet
decomposition (WPD), and an overall accuracy of 100% was finally
achieved in ictal vs. interictal sEEG. However, only 1000 interictal,
1000 ictal and 1000 preictal 8-s segments were specially selected
from the CHB-MIT sEEG dataset for the analysis of seizure detec-
tion, which greatly damaged the integrity of the data. Recently,
several leading deep learning techniques, including CNN, LSTM
and recurrent neural network (RNN), were also applied to the
CHB-MIT sEEG dataset. In [19], 1D-CNN was used to classify the
4-s raw SsEEG segments, and it achieved 66.76% sensitivity,
99.63% specificity and 99.07% accuracy. Hossain et al. applied a
7-layer two-dimensional convolutional neural network (2D-CNN)
to classify the time-channel sEEG matrixes, and this approach
obtained an overall sensitivity, specificity and accuracy of 90.00%,
91.65% and 98.05%, respectively [20]. Different from the 2D-CNN
used in [20], Liang et al. achieved an accuracy of 99.00% by using
a 2D-CNN-LSTM model for seizure detection. In this model, 2D-
CNN was used as the feature extraction model for learning the
high-level representations of inputs. The outputs of 2D-CNN were
then fed into LSTM for classification [21]. In [22], a bidirectional
LSTM (Bi-LSTM) network was utilized for the classification of 4-s
sEEG epochs, and the method attained 93.61% sensitivity and
91.85% specificity. The RNN model was applied by Yao et al. for sei-
zure detection, and it achieved the averaged sensitivity, specificity
and accuracy of 88.80%, 88.60% and 88.69%, respectively [23].

As mentioned above, many conventional machine learning and
deep learning methods have been applied to the CHB-MIT sEEG
dataset for seizure detection, but many relevant studies only eval-
uated the performances in a segment-based level. In the segment-
based level, many studies concatenated all seizures of a patient
into one seizure, and then the ictal segments cut from the con-
catenated seizure were used for classification, ignoring the detec-
tion of each seizure (the event-based level). From the perspective
of the detection of a seizure or in the event-based level, when
detecting seizures during long-term EEG recoding, an excellent
system should alarm accurately with short latency and low false
detection rate (FDR). Therefore, both levels (the segment-based
level and the event-based level) should be evaluated simultane-
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ously in the analysis of long-term EEG recordings for seizure
detection.

In this paper, the long-term sEEG and iEEG recordings are ana-
lyzed for the detection of seizures. In the long-term EEG record-
ings, most of the EEG recordings are in the interictal stage, while
the time duration of a seizure usually ranges from tens of seconds
to several minutes. Consequently, the problem of sample imbal-
ance should be considered and properly resolved in the analysis
of the long-term EEG recodings. The novelty and main contribu-
tions of this paper are summarized as follows:

e Two long-term datasets, the CHB-MIT sEEG dataset and the
SWEC-ETHZ iEEG dataset [24], are analyzed in this paper.
Therefore, the effectiveness of the proposed method in seizure
detection is tested with two different datasets, SEEG and iEEG.

o A stacked 1D-CNN model is proposed in this study. Two differ-
ent parallel 1D-CNNs with different calculation sizes are used to
learn the high-level representations simultaneously. Then, the
diverse features of these two 1D-CNNs are concatenated for
classification.

¢ Since sample imbalance is a key problem in the long-term EEG
recordings, a random selection and data augmentation (RS-DA)
strategy is proposed to balance samples during the model train-
ing phase.

e To better evaluate the performances of the proposed method,
we evaluate the classification results for each patient in the
two levels: the segment-based level and the event-based level.
In the segment-based level, sensitivity, specificity and accuracy
are calculated. In the event-based level, we calculate the sensi-
tivity, FDR and latency (time duration from the onset of a sei-
zure to its detection).

The remaining of this paper is organized as follows: Section 2
describes the materials and the proposed method. Results are
showed in Section 3. Discussion and conclusion are given in Sec-
tion 4 and Section 5, respectively.

2. Materials and methods

In this section, we first describe two long-term EEG datasets
(the sEEG dataset and the iEEG dataset). Then, we present the pro-
posed method including preprocessing, CNN model, model training
and system evaluation.

2.1. Data preparation

The CHB-MIT sEEG dataset (https://archive.physionet.org/phys-
iobank/database/chbmit/) [3] and the SWEC-ETHZ iEEG dataset
(https://ieeg-swez.ethz.ch) [24]| were used for the analysis of sei-
zure detection.

The CHB-MIT sEEG dataset consists of 916 h of sEEG and 198
seizures. The sEEG recordings from 24 patients are recorded at a
sampling rate of 256 Hz, and most of recordings contain 23 chan-
nels [3]. In this study, 24 h of interictal SEEG data (all if less than
24 h) were selected for each patient. The selection criteria of sei-
zures were as follows: (1) If the time interval between two seizures
was short (less than 20 min), the two seizures were concatenated
into one seizure, (2) A concatenated seizure or a raw seizure lasting
more than 10 s was chosen, and so seizures which lasted less than
10 s were not considered. The details of the selected sEEG signals
were summarized in Table 1.

In the SWEC-ETHZ iEEG dataset, it contains 2565 h of iEEG and
116 leading seizures from 18 patients. The sampling rate is 512 or
1024 Hz, and the number of iEEG channels ranges from 24 to 128.
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Table 1
Details of the selected sEEG singals from the CHB-MIT sEEG dataset.

Patient # Channels Interictal (h) # Seizures mean # std (s)
1 23 24 7 63 +30
2 23 24 3 57 £41
3 23 24 7 57 +8

4 23 24 4 94 + 31
5 23 24 5 111 +£9
6 23 24 10 153

7 23 24 3 108 £ 30
8 23 15 5 184 + 49
9 23 24 3 68+9
10 23 24 7 64 +17
11 23 24 3 268 + 418
12 23 12 10 96 + 69
13 18 24 8 67 55
14 23 19 7 24 +12
15 24 24 14 142 + 98
16 18 13 6 149
17 23 18 3 98 +15
18 23 24 5 63+13
19 23 24 3 79 £2
20 23 233 6 49 + 22
21 23 24 4 50 + 28
22 23 24 3 68+9
23 23 23 5 85+ 60
24 23 123 14 36 +23
Total 518.6 145

* Mean and standard deviation of the time duration of seizures per patient.

More details of this dataset can be found in [24]. For this dataset,
we also selected 24 h of interictal iEEG for each patient. The selec-
tion criteria for seizures were the same as described in the CHB-
MIT sEEG dataset. Then, the selected iEEG signals were uniformly
down-sampled to 256 Hz (same sampling rate as the CHB-MIT
sEEG dataset). We summarized the details of the selected iEEG sig-
nals in Table 2.

2.2. Methodology

2.2.1. Preprocessing

Before training and testing the proposed model, we need to
generate a certain number of samples. In the preprocessing, 2-s
sliding windows were applied to segment the long-term EEG sig-
nals (as shown in Fig. 1). Since a seizure lasted from tens of seconds
to several minutes (as shown in Tables 1 and 2), the size of 2-s ictal

Table 2
Details of the selected iEEG signals from the SWEC-ETHZ iEEG dataset.

Patient # Channels Interictal (h) # Seizures mean * std (s)
1 88 24 2 601 + 17
2 66 24 2 88 +2

3 64 24 4 64 + 4

4 32 24 14 41+ 14

5 128 24 4 161

6 32 24 8 45 + 33

7 75 24 4 69 + 38

8 61 24 7 219 £ 176
9 48 24 17 67 + 47
10 32 24 16 75 £ 21
11 32 24 2 91 £+ 11
12 56 24 9 146 + 33
13 64 24 7 102 + 61
14 24 24 16 96 + 39
15 98 24 2 94 +35
16 34 24 5 190 + 51
17 60 24 2 97 £ 1

18 42 24 5 199 + 100
Total 432 126
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Fig. 1. For interictal EEG signals, we used 2-s sliding windows without overlap. For
ictal EEG signals which were selected as the training set, we used 2-s sliding
windows with the corresponding overlap ratio (0.75-0.9).

segments was very small. In order to generate more ictal segments,
2-s sliding windows with the corresponding overlap ratio were
used to segment the raw ictal EEG signals only during the model
training phase. The overlap ratio ranged from 0.75 to 0.9 (depend-
ing on the number and the time duration of seizures). For example,
the ictal segments from patients 6 and 16 in Table 1 and patient 5
in Table 2 were obtained with the overlap ratio of 0.9, while the
ictal segments from patient 15 in Table 1 and patient 1 in Table 2
were attained with the overlap ratio of 0.75. In obtaining 2-s inter-
ictal segments, we used 2-s sliding windows without overlap. The
preprocessing in obtaining the segments of interictal and ictal sig-
nals is illustrated in Fig. 1.

Due to the sampling rate of 256 Hz, one 2-s EEG segment can be
regarded as a matrix of n x512, where n is the number of channels
of each patient, and 512 is the number of sampling points. In this
study, the 2-s EEG segments were used as the direct inputs of
the proposed 1D-CNN model.

2.2.2. Convolutional neural networks (CNN)

CNN is generally composed of convolutional layers, pooling lay-
ers and fully connected layers. A convolutional layer contains a cer-
tain number of convolution kernels and performs convolution
calculations on the input signals. The convolution results are then
nonlinearized by activation functions. In our 1D-CNN model, the
rectified linear activation unit (ReLU) was used in convolutional
layers. The pooling layer is also called the down-sampling layer,
which performs pooling operations on the outputs of the convolu-
tional layer to preserve higher-level representations. Pooling pro-
cesses including maximum pooling and global average pooling
were used in our model. After the signals pass through convolu-
tional layers and pooling layers, the high-level features are usually
fed into fully connected layers for the final classification.

In this work, a stacked 1D-CNN model was proposed for seizure
detection. As shown in Fig. 2, it has two parallel blocks, and the
EEG segments are sent to both blocks at the same time. The two
blocks are named Block 1 and Block 2, respectively. The Block 1 con-
tains three convolutional blocks. The first convolutional block con-
sists of a convolutional layer (32 kernels with the size of n x 3 and
the stride of 2, where n is the number of channels), a batch normal-
ization (BN) layer and a max-pooling (MP) layer (the pooling size of
3 and the stride of 1). In the second convolutional block, it includes
a convolutional layer with 64 kernels (the size of 3 and the stride of
2), a BN layer and a MP layer with the pooling size of 3 and the
stride of 1. The third convolutional block also contains a convolu-
tional layer (128 kernels with the size of 3 and stride of 1), a BN
layer and a MP layer with the pooling size of 3 and the stride of
1. The structure of the Block 2 is the same as that of the Block 1,
and the only difference is the size of convolution kernels in the first
and second convolution layers. In the Block 2, the kernel sizes of
these two layers are n x 5 and 5, respectively. At the end of the
Block 1 and the Block 2, the learned high-level representations
are concatenated. Then, the concatenated features are globally
averaged as the inputs of two fully connected layers. The first fully
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Fig. 2. A stacked 1D-CNN model was proposed for seizure detection. M@n x k; or
M@k,: M is the number of kernels, n x k; and k, are the sizes of convolutional
kernels. Abbreviations: Conv, convolution; BN, batch normalization; MP, max-
pooling; sy, pooling size; s, stride; GAP, global average pooling; FC, fully connected.
L is the number of consecutive detection labels for an alarm.

connected layer has 128 neurons with ReLU function. The second
fully connected layer is the output layer with 2 neurons with Soft-
max function. According to the 1D-CNN model, the number of cal-
culation parameters and the output shape in each layer are
summarized in Table 3.

For the outputs from the stacked 1D-CNN model, a simple post-
processing was performed for accurately detecting a seizure and
sounding an alarm (as shown in Fig. 2). In order to sound an alarm
accurately and reliably, it must meet a condition that L consecutive
detection labels were positive. The value of L ranged from 2 to 5,
and the final L value was determined according to the classification
results. In theory, when the L value increases, the FDR decreases
and the latency of an alarm becomes longer. To avoid unnecessary
repeated alarms, we should set the minimum time interval (MTI)
between two alarms. In this work, the averaged time duration of
seizures of each patient was set as the MTI between two alarms
for each patient. Therefore, when the first alarm sounded, in the
following MTI, the second alarm was prohibited.
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Table 3

In the proposed 1D-CNN model, the number of calculation parameters and the output
shape in each layer are summarized as below. f x n is the size of the input matrix,
where fis equal to 512, and n (18 to 128) is the number of EEG channels.

Layer and type Output shape # Parameters

Input fxn 0

2 * Conv* 2 *(fl2 x 32) 4672-32832°
2 * (BN + MP)? 2% (fl2 x 32) 256

2 * Conv 2 *(fl4 x 64) 16512

2 * (BN + MP) 2 * (fl4 x 64) 512

2 * Conv 2" (fl4 x 128) 49408

2 * (BN + MP) 2 *(fl4 x 128) 1024

GAP 256 0

Dense 128 32896

Dense 2 258

Total 105538-133698

2 Two parallel layers.
> The number is related to the value of n (18 to 128).

2.2.3. Model training

The patient-specific model was trained for each patient. For
detecting all seizures of each patient, the approach of event-
based K-fold cross validation was used, where K was the number
of seizures per patient. If a subject has K seizures, the model train-
ing is performed K rounds. In each round, (K-1) seizures are
selected for training, and the remaining one is used for testing
(as shown in Fig. 3).

Since the time duration of interictal EEG is about 50 to 1300
times longer than that of ictal EEG among different patients (as
shown in Tables 1 and 2), the sample imbalance is a key problem
in this work. In order to solve the problem during model training,
we proposed a RS-DA strategy. As shown in Fig. 3, we augmented
(K-1) ictal seizures by using the oversampling technique men-
tioned in the preprocessing (Section 2.2.1). However, the size of
the augmented ictal segments was still much smaller than that
of interictal segments. Therefore, the random selection was per-
formed on interictal segments. We first divided interictal segments
into K equal parts. Then, an equal number of interictal segments
were randomly selected from (K-1) parts to make the size of the
selected interictal segments equal to that of the augmented ictal
segments. Finally, the selected interictal segments and the aug-
mented ictal segments were used to train (80%) and monitor
(20%) the model during model training. The remaining segments
(one interictal part and one seizure) were used to evaluate the
trained model. Through this way, all interictal segments and sei-
zures could be tested without repetition after K rounds.

During model training, the Early-Stopping technique was also
used to prevent overfitting, and the dropout rate of the second fully
connected layer was set to 0.25. Based on Keras 2.3.1 with
Tensorflow-1.15.0 backend, our model was implemented in Python
3.6, and one Nvidia Tesla P100 GPU was configured to run the pro-
posed model.

2.2.4. System evaluation
We evaluated the performances of the proposed method in the
two levels: the segment-based level and the event-based level.

e Segment-based level
In the segment-based level, sensitivity, specificity and accuracy

were calculated to evaluate the classification of EEG segments. The
three metrics can be expressed as follows:

P TP
Sensitivity = TP L EN (1)
i N
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Fig. 3. Event-based K-fold cross validation combined with a RS-DA strategy is applied during model training. If a subject has K seizures, the model training is performed K
rounds. In each round, one seizure and one interictal part are used as the testing sets, and the remaining (K-1) seizures and (K-1) interictal parts are used as the training sets.

After K rounds, all seizures and interictal EEG can be tested without repetition.

Accura _ IP+IN (3)
Y=TP{EN+IN + FP

where TP is true positive, indicating the number of true detected
ictal segments from ictal segments; FN is false negative, indicating
the number of ictal segments which are wrongly classified as inter-
ictal segments; TN is true negative, indicating the number of true
detected interictal segments from interictal segments; FP is false
positive, indicating the number of interictal segments which are
wrongly classified as ictal segments. Sensitivity is the percentage
of true detected ictal segments to total ictal segments, and speci-
ficity is the percentage of true detected interictal segments to total
interictal segments. An excellent classifier should have high sensi-
tivity and specificity at the same time.

e Event-based level

In the event-based level, we calculated the three metrics: sensi-
tivity, FDR and latency. Sensitivity and FDR can be expressed by the
following two formulas:

number of correctly detected seizures
number of all seizures

Sensitivity = (4)
number of incorrect detections

FDR = hours of interictal EEG

()
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Latency is the time duration between the onset of a seizure and
its detection. Fig. 4 shows an example of a false detection, a correct
detection and its latency. An outstanding system should have high
sensitivity with short latency and low FDR.

3. Results

The results from the CHB-MIT sEEG dataset and the SWEC-ETHZ
iEEG dataset are given in this section. The performances of the pro-
posed method are evaluated in the two levels at the same time. In
the segment-based level, the averaged results (sensitivity, speci-
ficity and accuracy) are calculated for each patient. In the event-
based level, the sensitivity, the FDR and the averaged latency of
an alarm are calculated.

3.1. Results of CHB-MIT SEEG dataset

Table 4 shows the results of each patient in the two levels after
event-based K-fold cross validation. As shown in Table 4, in the
segment-based level, the overall sensitivity, specificity and accu-
racy are 88.14%, 99.62% and 99.54%, respectively. The accuracy of
most patients (except patients 8, 12, 13 and 24) is higher than
99%, and that of all patients is higher than 98%. In the event-
based level, 144 out of 145 seizures (except one seizure of patient
16) are accurately detected, with a sensitivity of 99.31%. The over-
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Fig. 4. Event-based level: the example of a false detection, a correct detection and its latency.

all FDR is 0.2/h, and 7 patients (2, 4, 5, 10, 11, 14 and 19) have a
FDR of 0/h. The overall latency is 8.1 s, and the patient 22 has
the longest averaged latency of 14.7 s.

The value of L is related to sensitivity, FDR and latency in the
event-based level. We also calculate these three metrics under dif-
ferent L values. In this work, the value of L ranges from 2 to 5. As
shown in Fig. 5(a), we can see that, as the value of L increases,
the overall sensitivity and FDR show a decreasing trend, but the
overall latency of an alarm shows an increasing trend. When the
value of L is 5, the overall sensitivity and FDR are the lowest
(93.53% and 0.04/h, respectively), and the overall latency is the
longest, at 13 s.

3.2. Results of SWEC-ETHZ iEEG dataset

Based on the analysis of the SWEC-ETHZ iEEG dataset, Table 5
also gives the results of each patient in the two levels after
event-based K-fold cross validation. In the segment-based level,
the overall sensitivity of 90.09%, specificity of 99.81% and accuracy
of 99.73% are achieved. The accuracy of all patients is higher than
99%. In the event-based level, 123 out of 126 seizures (except one
seizure in patients 4, 6 and 7) are correctly detected, and its sensi-
tivity is 97.52%. The low overall FDR is 0.07/h, and the FDR of 10
patients (1, 6 and 9 to 16) is O/h. The overall latency of an alarm
is 13.2 s, and the longest averaged latency is 52.3 s for patient 8.

The overall sensitivity, FDR and latency with different L values
are also calculated in the event-based level. In Fig. 5 (b), as the L
value increases from 2 to 5, the sensitivity and FDR also show a
general downward trend, but the overall latency has a upward
trend. When the L value is equal to 4 or 5, the overall sensitivity
and FDR are the lowest, at 96.41% and 0.02/h, respectively. The
longest overall latency is 18.1 s when the L value is 5.

4. Discussion

In this work, we proposed a stacked 1D-CNN model combined
with the RS-DA strategy for seizure detection. The details of previ-
ous studies and this work, including the number of patients, pro-
cessing and the corresponding metrics were summarized in
Table 6 (the segment-based level) and Table 7 (the event-based
level). Since the long-term SWEC-ETHZ iEEG dataset was available
from 2019[24], we compared the results only based on the CHB-
MIT sEEG dataset.

As shown in Table 6, the conventional machine learning meth-
ods, including LDA [25], Extreme Learning Machine (ELM) [26],
SVM [7,16,27], RF [28], ANN [29] and KNN [17,30], were appiled
for seizure detection. The accuracy obtained by these methods ran-
ged from 84.8% to 99.41 %, and the highest accurcy of 99.41% was
achived by the RF in [28]. The deep learning methods, such as CNN
[19,20,31-33], autoencoders [34-37], LSTM [21,22] and RNN [23],
achieved the accuracy ranging from 84.00 % to 99.33%, and the
stacked 2D-CNN used in [33] attained the highest accuracy of
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99.33%. In this work, the proposed approach achieved the accuracy
of 99.54% and 99.73% for the CHB-MIT sEEG dataset and the SWEC-
ETHZ iEEG dataset, respectively. Therefore, from the perspective of
the accuracy, the performance of our method was better than that
of most previous studies in Table 6, and this proved that the pro-
posed stacked 1D-CNN was effective.

From the perspective of the sensitivity (in the segment-based
level), although the studies [7,16] attained higher sensitivities at
96.81% and 97.34%, respectively, the time-consuming and complex
feature extraction and selection engineering was applied. The
other three studies [28,30,32] achieved the high sensitivity of
97.91%, 96.66% and 98.84%, respectively, but one reason for the
high sensitivity was that it used the oversampling technique to
generate more ictal samples for classification. Because of the over-
lapping information between these augmented ictal samples, in
some sense, their classification was a repeated classification of
similar samples. Therefore, in [28,32,30], the high sensitivity was
overestimated. Different from the studies [28,32,30], in our work,
the oversampling technique was only used during the model train-
ing phase, and the ictal samples that were selected as the testing
set were obtained without oversampling. In fact, the number of
raw ictal samples is small (it can be seen from Tables 1 and 2 min-
imal amount of misclassification can greatly reduce the sensitivity.
Hence, as shown in Table 6, the 88.14% sensitivity of our work was
relatively high.

In the event-based level, the results of this work and previous
studies using the CHB-MIT sEEG dataset were summarized in
Table 7. The threshold method [38] and the conventional machine
learning methods including SVM [3,16,39], Neural Network Classi-
fier based on Improved Particle Swarm Optimization (IPSONN)
[40], Relevance Vector Machine (RVM) [41] and Adaptive
Distance-based Change-point Detector (ADCD) [42] were applied
for the detection of seizures. These methods achieved the sensitiv-
ity of 88.5% to 98.47% and the FDR of 0.08/h to 0.63/h, and the high-
est sensitivity of 98.47% was obtained using an SVM group with ten
SVMs in [16]. Deep learning methods, including CNN [31,43], Deep
Recurrent Neural Network (DRNN) [44] and AE [45], were used to
analyze the same dataset for seizure detection, and the sensitivity
ranging from 86.29% to 100% and the FDR ranging from 0.08/h to
0.74/h were achieved. Our method also showed the high perfor-
mances: (1) the sensitivity of 99.31% and the FDR of 0.2/h for the
CHB-MIT sEEG dataset; (2) 97.52% sensitivity and 0.07/h FDR for
the SWEC-ETHZ iEEG dataset. Hence, under the event-based level,
our method also performed better than most of the methods in
Table 7.

In [44], a sensitivity of 100% was attained, but only 5 out of 24
patients were used for the detection of seizures. The detection of
seizures with short latency (less than 20 s) can early eliminate
symptoms of the seizures [46,47]. Although the averaged latencies
(8.1 s and 13.2 s) of the CHB-MIT and the ETHZ-SWEC EEG datasets
were slightly longer than those in Table 7, they were still in the
acceptable range.
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In the CHB-MIT sEEG dataset, results of each patient are given in the two levels. L = 3 is finally selected for the event-based level.

Patient # Seizures K-Fold Segment-based level Event-based level

Sen; (%) Spe (%) Acc (%) Sen; (%) FDR (/h) Lat (s)
1 7 98.00 99.82 99.81 100 0.04 6.3
2 3 91.73 99.90 99.88 100 0 8.7
3 7 99.00 99.84 99.84 100 0.08 6.3
4 4 85.89 99.78 99.73 100 0 8
5 5 97.05 99.91 99.89 100 0 7.2
6 10 86.46 99.73 99.71 100 0.04 8
7 3 92.65 99.93 99.89 100 0.04 7.3
8 5 91.99 98.91 98.77 100 0.6 7.6
9 3 95.10 99.91 99.90 100 0.08 8
10 7 92.45 99.88 99.84 100 0 6.3
11 3 99.02 99.92 99.90 100 0 6
12 10 81.06 98.69 98.17 100 1.42 10
13 8 76.41 99.09 98.92 100 0.79 9.8
14 7 70.16 99.46 99.39 100 0 8.6
15 14 94.98 99.36 99.25 100 033 7.7
16 6 69.96 99.56 99.50 83.33 0.08 7.6
17 3 85.02 99.61 99.55 100 0.17 8
18 5 81.15 99.65 99.58 100 0.17 7.6
19 3 92.31 99.91 99.89 100 0 6
20 6 82.58 99.64 99.59 100 0.17 9.7
21 4 97.48 99.66 99.65 100 0.17 6
22 3 89.94 99.95 99.93 100 0.04 14.7
23 5 96.53 99.62 99.59 100 0.61 6
24 14 68.43 99.19 98.82 100 0.08 12.6
Total 145 88.14 99.62 99.54 99.31 0.20 8.1

Abbreviations: Sen;, segment-based sensitivity; Spe, specificity; Acc, accuracy; Sen,, event-based sensitivity; FDR, false detection rate; Lat, latency.

Sensitivity (¢ Sensitivity (%
00— — y (%) 100 ‘ y (%)
98r o TTEeel - 98 g e -
96 - e ] % T lmnmemms e = N
- T - 94 1
92 L L L L 92 L L L L
L=2 L=3 L=4 L=5 L=2 L=3 L=4 L=5
06 False detection rate (FDR, /h) 06 False detection rate (FDR, /h)
o : ‘ ‘ ‘ : ‘ ‘
04 Tl 404 F 1
02 - S @iz A 1
o L ‘ B Y e 0 B S . °
L=2 L=3 L=4 L=5 L=2 L=3 L=4 L=5
20 Latency of an alarm (sec) 20 Latency of an alarm (sec)
: ‘ ‘ : — :
L | Lo e S 1
e « I R
10 [mmmm i e | S , 10 [* 77 4
L — pr— 0
b S L L L 5 L L L L
L=2 L=3 L=4 L=5 L=2 L=3 L=4 L=5

Number of continuous detection labels for an alarm

(@

Number of continuous detection labels for an alarm

(b)

Fig. 5. In the event-based level, the value of L ranges from 2 to 5. (a) For the CHB-MIT sEEG dataset, the overall sensitivity, FDR and latency are showed. (b) For the SWEC-
ETHZ iEEG dataset, the overall sensitivity, FDR and latency are showed. L = 3 is finally selected for the event-based level in this work.

As the results shown in Tables 6 and 7, our method showed
high performances in the two levels, and it performed better
than most of the methods in Tables 6 and 7. Moreover, the pro-
posed method was effective for both datasets, the sEEG and the
iEEG. According to our work, there are several highlights that
need to be emphasized. Firstly, a 1D-CNN model is used in this
study, which can be directly applied for the classification of raw
EEG signals without additional preprocessing of EEG signals,
such as frequency domain analysis and time-frequency domain
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analysis. Secondly, in order to obtain more different high-level
representations for a better classification, we proposed a stacked
1D-CNN model consisting of two parallel 1D-CNN blocks. The
two parallel 1D-CNN blocks with different calculation sizes can
learn different high-level representations at the same time, and
the diverse features of these two 1D-CNN blocks are then con-
catenated for the further analysis. Thirdly, the RS-DA strategy
is first utilized to solve the problem of sample imbalance during
model training.
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In the SWEC-ETHZ iEEG dataset, results of each patient are given in the two levels. L = 3 is finally selected for the event-based level.

Patient # Seizures K-Fold Segment-based level Event-based level
Sen; (%) Spe (%) Acc (%) Sen; (%) FDR (/h) Lat (s)
1 2 93.59 99.94 99.85 100 0 10
2 2 97.67 99.86 99.85 100 0.13 9
3 4 100 99.88 99.88 100 0.17 6
4 14 75.56 99.31 99.19 92.86 0.13 12.8
5 4 100 99.67 99.67 100 0.33 6
6 8 81.61 99.96 99.80 87.50 0 6.6
7 4 70.53 99.89 99.84 75.00 0.04 14
8 7 78.93 99.53 99.04 100 0.04 523
9 17 98.64 99.84 99.83 100 0 7.3
10 16 96.44 99.95 99.89 100 0 6.9
11 2 100 99.99 99.99 100 0 6
12 9 97.04 99.80 99.77 100 0 9.6
13 7 86.55 99.85 99.78 100 0 114
14 16 94.87 99.61 99.49 100 0 6.8
15 2 94.52 99.98 99.97 100 0 14
16 5 96.44 99.94 99.90 100 0 13.2
17 2 85.57 99.81 99.78 100 0.17 22
18 5 73.70 99.68 99.53 100 0.21 24.4
Total 126 90.09 99.81 99.73 97.52 0.07 13.2
Table 6
Segment-based level: list of previous studies and this work using the CHB-MIT sEEG dataset for seizure detection.
Author Year Dataset Processing # Patients Sen (%) Spe (%) Acc (%)
Khan et al. [25] 2012 CHB-MIT Multiple wavelet scales + LDA 5 83.6 100.0 91.8
Ammar et al. [26] 2016 CHB-MIT DWT + ELM 3 - - 94.85
Janjarasjitt et al. [27] 2017 CHB-MIT Wavelet based features + SVM 24 72.99 98.13 96.87
Yuan et al. [34] 2017 CHB-MIT STFT + SSDA 9 - - 93.82
Bhattacharyya et al. [28] 2017 CHB-MIT Channel selection, EWT + RF 23 (177 h) 97.91 99.57 99.41
Yuan et al. [35] 2018 CHB-MIT STFT, ChannelAtt + SSDA 9 - - 96.61
Wen et al. [36] 2018 CHB-MIT Channel selection + CNN-AE 24 - - 92
Boonyakitanont et al. [19] 2019 CHB-MIT DWT, feature extraction, normalization + 1D-CNN 24 records”® 66.76 99.63 99.07
Yuan et al. [37] 2019 CHB-MIT Data augmentation, STFT + CNN-AE 24 - - 94.37
Hossain et al. [20] 2019 CHB-MIT 2D array (time * channels) + 2D-CNN 23 90.00 91.65 98.05
Liang et al. [21] 2019 CHB-MIT 2D array (time * channels) + 2D-CNN-LSTM 24 84.00 99.00 99.00
Wei et al. [31] 2019 CHB-MIT MIDS, WGANs + 1D-CNN 24 7211 95.89 84.00
Tian et al. [32] 2019 CHB-MIT Oversampling, FFT, WPD + 2D-CNN, 3D-CNN 24 96.66 99.14 98.33
Yao et al. [23] 2019 CHB-MIT Windowing + IndRNN 24 88.80 88.60 88.69
Cao et al. [33] 2019 CHB-MIT STFT, MAS, AWF + S-2D-CNN 24 - - 99.33
Zabihi et al. [29] 2020 CHB-MIT Phase space, nullcline + LDA-ANN 23 (171 h) 91.15 95.16 95.11
Li et al. [30] 2020 CHB-MIT Channel selection, NMD, FCM, + KNN 24 98.40 99.01 98.61
Hu et al. [22] 2020 CHB-MIT LMD, statistical feature extraction + Bi-LSTM 24 93.61 91.85 -
Zarei et al. [7] 2021 CHB-MIT OMP, DWT, Non-linear features + SVM 23 96.81 97.26 97.09
Lietal. [16] 2021 CHB-MIT EMD, CSP + an SVM group consisting of ten SVMs 24 97.34 97.50 97.49
Shoka et al. [17] 2021 CHB-MIT Variance channel selection + KNN 23 - - 84.8
This work 2021 CHB-MIT 2D array (time * channels), RS-DA strategy + S-1D-CNN 24 88.14 99.62 99.54
This work 2021 SWEC-ETHZ 2D array (time * channels), RS-DA strategy + S-1D-CNN 18 90.09 99.81 99.73

STFT, short-time Fourier transform; SSDA, stacked sparse denoising autoencoders; EWT, empirical wavelet transform; ChannelAtt, channel-aware attention mechanism;
CNN-AE, convolutional autoencoder; MIDS, merger of the increasing and decreasing sequences; WAGNs, wasserstein generative adversarial nets; FFT, fast Fourier transform;
3D-CNN, three-dimensional CNN; IndRNN, independently RNN; MAS, mean amplitude of spectrum map; AWF, adaptive and discriminative feature weighting fusion; S-2D-
CNN, stacked 2D-CNN; S-1D-CNN, stacked 1D-CNN; NMD, nonlinear mode decomposition; FCM, fractional central moment; LMD, local mean decomposition; OMP,

orthogonal matching pursuit; CSP, common spatial pattern.

*The CHB-MIT sEEG dataset contains a total of 686 records, while one record of each patient is selected.

However, one limitation of this study is that only a 1D-CNN
model is applied. Other deep learning models, such as 2D-CNN
and LSTM, combined with the RS-DA strategy can also be applied
to the same datasets for more detailed comparisons. Another lim-
itation is that we ignore the use of epilepsy-related EEG features
for seizure detection. The EEG features, including statistical param-
eters, frequency or time-frequency domain features, entropies,
etc., can be extracted and incorporated as the input to the 1D-
CNN model. By this method, it may improve the results of seizure
detection. In the future work, this highlight can be further analyzed
and discussed.
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5. Conclusion

In this paper, we presented a stacked 1D-CNN model for the
detection of seizure onset. In this model, two parallel 1D-CNN
blocks with different calculation sizes were used to learn the
high-level representations of the EEG inputs simultaneously. The
outputs of these two parallel 1D-CNN blocks were then concate-
nated for the final classification. Since the sample imbalance was
a key issue in the long-term epileptic EEG recordings, a RS-DA
strategy combined with the event-based K-fold cross validation
was proposed for balancing samples during model training. In this
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Table 7

Event-based level: list of previous studies and this work using the CHB-MIT sEEG dataset for seizure detection.
Author Year Dataset Processing # Patients Sen (%) FDR (/h) Lat (s)
Shoeb et al. [3] 2010 CHB-MIT Spectral and spatial features + SVM 24 96 0.08 3
Nasehi et al. [40] 2013 CHB-MIT DWT, DFT + IPSONN 23 98 0.125 -
Satirasethawong et al. [38] 2015 CHB-MIT Amplitude-integrated EEG + Thresholding 24 88.5 0.18 -
Vidyaratne et al. [44] 2016 CHB-MIT Filtering, Montage Mapping + DRNN 5 100 0.08 ~7.0
Vidyaratne et al. [41] 2017 CHB-MIT HWPT, FD, spatial and temporal features + RVM 24 96 0.1 1.89
Khanmohammadi et al. [42] 2017 CHB-MIT PCA-CSP + ADCD 24 96 0.12 421
Yuvaraj et al. [43] 2018 CHB-MIT Filtering + 1D-CNN 24 86.29 0.74 21
Wei et al. [31] 2019 CHB-MIT MIDS, WGANSs + 1D-CNN 24 90.57 - 4.68
Raghu et al.[39] 2019 CHB-MIT Filtering, successive decomposition index + SVM 23 97.28 0.57 1.7
Tang et al. [45] 2020 CHB-MIT PCA-CSP, MMSE, feature selection + uMMD-AE 20 97.2 0.64 1.1
Li et al. [16] 2021 CHB-MIT EMD, CSP + an SVM group consisting of ten SVMs 24 98.47 0.63 -
This work 2021 CHB-MIT 2D array (time * channels), RS-DA strategy + S-1D-CNN 24 99.31 0.20 8.1
This work 2021 SWEC-ETHZ 2D array (time * channels), RS-DA strategy + S-1D-CNN 18 97.52 0.07 13.2

DFT, discrete Fourier transform; PCA-CSP, principal component analysis-common spatial patterns; MMSE, multivariate multiscale sample entropy; uMMD-AE, unified

maximum mean discrepancy-based autoencoder.

way, we tested all samples of the selected EEG without abandoning
the interictal samples. The proposed method was evaluated on two
long-term EEG datasets (the CHB-MIT sEEG dataset and the SWEC-
ETHZ iEEG dataset) at the same time. To better evaluate the perfor-
mances of the proposed method, two kinds of evaluation levels
(the segment-based level and the event-based level) were calcu-
lated. For the CHB-MIT sEEG dataset, in the segment-based level,
an accuracy of 99.54% was achieved. In the event-based level,
144 out of 145 seizures were accurately detected with 0.2/h FDR
and 8.1-s latency. For the SWEC-ETHZ iEEG dataset, an accuracy
of 99.73% was obtained in the segment-based level. In the event-
based level, 123 out of 126 seizures were correctly detected with
0.07/h FDR and 13.2-s latency. Moreover, the selection of the L
value was significant in the event-based level, and L = 3 was finally
selected in this work. Based on the results obtained, the proposed
method showed that it could perform well in the seizure detection
with both sEEG and iEEG data. The theoretical contribution of our
work may provide more epilepsy patients with the opportunity to
possess a seizure detection device in clinical applications.
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